Zidovudine Oral Solution

Name: Zidovudine Oral Solution

Dosage Forms and Strengths

Zidovudine Syrup (Zidovudine Oral Solution USP) (colorless to pale yellow strawberry flavored clear solution) containing 50 mg zidovudine in each teaspoon (5mL).

Contraindications

Zidovudine Oral Solution is contraindicated in patients who have had potentially life-threatening hypersensitivity reactions (e.g., anaphylaxis, Stevens-Johnson syndrome) to any of the components of the formulations.

Use in specific populations

Pregnancy

Teratogenic Effects

Pregnancy Exposure Registry

There is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to zidovudine during pregnancy. Healthcare providers are encouraged to register patients by calling the Antiretroviral Pregnancy Registry (APR) at 1-800-258-4263.

Risk Summary

Available data from the APR show no difference in the overall risk of birth defects for zidovudine compared with the background rate for birth defects of 2.7% in the Metropolitan Atlanta Congenital Defects Program (MACDP) reference population [see Data]. The APR uses the MACDP as the U.S. reference population for birth defects in the general population. The MACDP evaluates women and infants from a limited geographic area and does not include outcomes for births that occurred at less than 20 weeks gestation. The rate of miscarriage is not reported in the APR. The estimated background rate of miscarriage in clinically recognized pregnancies in the U.S. general population is 15% to 20%. The background risk for major birth defects and miscarriage for the indicated population is unknown.

In an animal reproduction study, administration of oral zidovudine to female rats prior to mating and throughout gestation resulted in embryotoxicity at doses that produced systemic exposure (AUC) approximately 33 times higher than exposure at the recommended clinical dose. However, no embryotoxicity was observed after oral administration of zidovudine to pregnant rats during organogenesis at doses that produced systemic exposure (AUC) approximately 117 times higher than exposures at the recommended clinical dose. Administration of oral zidovudine to pregnant rabbits during organogenesis resulted in embryotoxicity at doses that produced systemic exposure (AUC) approximately 108 times higher than exposure at the recommended clinical dose. However, no embryotoxicity was observed at doses that produced systemic exposure (AUC) approximately 23 times higher than exposures at the recommended clinical dose [see Data].

Data

Human Data: Based on prospective reports to the APR of over 13,000 exposures to zidovudine during pregnancy resulting in live births (including over 4,000 exposed in the first trimester), there was no difference between the overall risk of birth defects for zidovudine (2.9%) compared with the background birth defect rate of 2.7% in a U.S. reference population of the MACDP. The prevalence of birth defects in live births was 3.2% (95% CI: 2.7% to 3.8%) following first trimester exposure to zidovudine-containing regimens.

A randomized, double-blind, placebo-controlled trial was conducted in HIV-1-infected pregnant women to determine the utility of zidovudine for the prevention of maternal-fetal HIV-1-transmission [see Clinical Studies (14.3)]. Zidovudine treatment during pregnancy reduced the rate of maternal-fetal HIV-1 transmission from 24.9% for infants born to placebo-treated mothers to 7.8% for infants born to mothers treated with zidovudine. There were no differences in pregnancy-related adverse events between the treatment groups. Of the 363 neonates that were evaluated, congenital abnormalities occurred with similar frequency between neonates born to mothers who received zidovudine and neonates born to mothers who received placebo.  The observed abnormalities included problems in embryogenesis (prior to 14 weeks) or were recognized on ultrasound before or immediately after initiation of study drug.

Zidovudine has been shown to cross the placenta and concentrations in neonatal plasma at birth were essentially equal to those in maternal plasma at delivery [see Clinical Pharmacology (12.3)].

Animal Data: A study in pregnant rats (at 50, 150, or 450 mg per kg per day starting 26 days prior to mating through gestation to postnatal Day 21) showed increased fetal resorptions at doses that produced systemic exposures (AUC) approximately 33 times higher than exposure at the recommended daily human dose (300 mg twice daily). However, in an oral embryo-fetal development study in rats (at 125, 250, or 500 mg per kg per day on gestation Days 6 through 15), no fetal resorptions were observed at doses that produced systemic exposure (AUC) approximately 117 times higher than exposures at the recommended daily human dose. An oral embryo-fetal development study in rabbits (at 75, 150, or 500 mg per kg per day on gestation Day 6 through 18) showed increased fetal resorptions at the 500-mg-per-kg-per-day dose, which produced systemic exposures (AUC) approximately 108 times higher than exposure at the recommended daily human dose; however, no fetal resorptions were noted at doses up to 150 mg per kg per day, which produced systemic exposure (AUC) approximately 23 times higher than exposures at the recommended daily human dose. These oral embryo-fetal development studies in the rat and rabbit revealed no evidence of fetal malformations with zidovudine. In another developmental toxicity study, pregnant rats (dosed at 3,000 mg per kg per day from Days 6 through 15 of gestation) showed marked maternal toxicity and an increased incidence of fetal malformations at exposures greater than 300 times the recommended daily human dose based on AUC. However, there were no signs of fetal malformations at doses up to 600 mg per kg per day..

Lactation

Risk Summary

The Centers for Disease Control and Prevention recommend that HIV-1-infected mothers in the United States not breastfeed their infants to avoid risking postnatal transmission of HIV-1 infection. Zidovudine is present in human milk. There is no information on the effects of zidovudine on the breastfed infant or the effects of the drug on milk production. Because of the potential for (1) HIV-1 transmission (in HIV-negative infants), (2) developing viral resistance (in HIV-positive infants), and (3) serious adverse reactions in a breastfed infant instruct mothers not to breastfeed if they are receiving zidovudine.

Pediatric Use

Zidovudine has been studied in HIV-1-infected pediatric subjects aged at least 6 weeks who had HIV--1 related symptoms or who were asymptomatic with abnormal laboratory values indicating significant HIV-1-related immunosuppression. Zidovudine has also been studied in neonates perinatally exposed to HIV-1 [see Dosage and Administration (2.2), Adverse Reactions (6.1);Clinical Pharmacology (12.3);Clinical Studies (14.2); (14.3)].

Geriatric Use

Clinical studies of zidovudine did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

Renal Impairment

Unchanged zidovudine and its glucuronide metabolite (formed in the liver) are primarily eliminated from the body by renal excretion. In patients with severely impaired renal function (CrCl less than 15 mL per min), dosage reduction is recommended [see Dosage and Administration (2.5), Clinical Pharmacology (12.3)].

Hepatic Impairment

Zidovudine is primarily eliminated by hepatic metabolism and zidovudine concentrations appear to be increased in patients with impaired hepatic function, which may increase the risk of hematologic toxicity. Frequent monitoring of hematologic toxicities is advised. There are insufficient data to recommend dose adjustment of zidovudine in patients with impaired hepatic function or liver cirrhosis [see Dosage and Administration (2.6), Clinical Pharmacology (12.3)].

Overdosage

Acute overdoses of zidovudine have been reported in pediatric patients and adults. These involved exposures up to 50 grams. No specific symptoms or signs have been identified following acute overdosage with zidovudine apart from those listed as adverse events such as fatigue, headache, vomiting, and occasional reports of hematological disturbances. Patients recovered without permanent sequelae. Hemodialysis and peritoneal dialysis appear to have a negligible effect on the removal of zidovudine while elimination of its primary metabolite, 3′- azido-3′-deoxy-5′-O-β-D-glucopyranuronosylthymidine (GZDV), is enhanced. If overdose occurs, the patient should be monitored for evidence of toxicity and given standard supportive treatment as required.

Zidovudine Oral Solution - Clinical Pharmacology

Mechanism of Action

Zidovudine is an antiretroviral agent [see Microbiology (12.4)].

Pharmacokinetics

Absorption and Bioavailability

In adults, following oral administration, zidovudine is rapidly absorbed and extensively distributed, with peak serum concentrations occurring within 0.5 to 1.5 hours. The AUC was equivalent when zidovudine was administered as zidovudine tablets or syrup compared with zidovudine capsules. The pharmacokinetic properties of zidovudine in fasting adult subjects are summarized in Table 7.

Table 7. Zidovudine Pharmacokinetic Parameters in Adult Subjects

aMedian [range] for 50 paired samples drawn 1 to 8 hours after the last dose in subjects on chronic therapy with zidovudine.

bApproximate range

Parameter
Mean ± SD
(except where noted)
Oral bioavailability (%)
64 ± 10
(n = 5)
Apparent volume of distribution (L/kg)
1.6 ± 0.6
(n = 8)
Cerebrospinal fluid (CSF): plasma ratioa
0.6 [0.04 to 2.62]
(n = 39)
Systemic clearance (L/h/kg)
1.6 ± 0.6
(n = 6)
Renal clearance (L/h/kg)
0.34 ± 0.05
(n = 9)
Elimination half-life (h)b
0.5 to 3
(n = 19)

Distribution

The apparent volume of distribution of zidovudine, is 1.6 ± 0.6 L per kg (Table 7) and binding to plasma protein is low (less than 38%).

Metabolism and Elimination

Zidovudine is primarily eliminated by hepatic metabolism. The major metabolite of zidovudine is GZDV. GZDV AUC is about 3-fold greater than the zidovudine AUC. Urinary recovery of zidovudine and GZDV accounts for 14% and 74%, respectively, of the dose following oral administration. A second metabolite, 3′-amino-3′-deoxythymidine (AMT), has been identified in the plasma following single-dose intravenous (IV) administration of zidovudine. The AMT AUC was one-fifth of the zidovudine AUC. Pharmacokinetics of zidovudine were dose independent at oral dosing regimens ranging from 2 mg per kg every 8 hours to 10 mg per kg every 4 hours.

Effect of Food on Absorption

Zidovudine may be administered with or without food. The zidovudine AUC was similar when a single dose of zidovudine was administered with food.

Specific Populations

Renal Impairment: Zidovudine clearance was decreased resulting in increased zidovudine and GZDV half-life and AUC in subjects with impaired renal function (n = 14) following a single 200-mg oral dose (Table 8). Plasma concentrations of AMT were not determined. No dose adjustment is recommended for patients with CrCl greater than or equal to 15 mL per min.

Table 8. Zidovudine Pharmacokinetic Parameters in Subjectswith Severe Renal Impairmenta

aData are expressed as mean ± standard deviation.

Parameter
Control Subjects
(Normal Renal Function)
Subjects With Renal Impairment
(n = 6)
(n = 14)
CrCl (mL/min)
120 ± 8
18 ± 2
Zidovudine AUC (ng•h/mL)
1,400 ± 200
3,100 ± 300
Zidovudine half-life (h)
1.0 ± 0.2
1.4 ± 0.1

Hemodialysis and Peritoneal Dialysis: The pharmacokinetics and tolerance of zidovudine were evaluated in a multiple-dose trial in subjects undergoing hemodialysis (n = 5) or peritoneal dialysis (n = 6) receiving escalating doses up to 200 mg 5 times daily for 8 weeks. Daily doses of 500 mg or less were well tolerated despite significantly elevated GZDV plasma concentrations. Apparent zidovudine oral clearance was approximately 50% of that reported in subjects with normal renal function. Hemodialysis and peritoneal dialysis appeared to have a negligible effect on the removal of zidovudine, whereas GZDV elimination was enhanced. A dosage adjustment is recommended for patients undergoing hemodialysis or peritoneal dialysis [see Dosage and Administration (2.5)].

Hepatic Impairment: Data describing the effect of hepatic impairment on the pharmacokinetics of zidovudine are limited. However, zidovudine is eliminated primarily by hepatic metabolism and it appears that zidovudine clearance is decreased and plasma concentrations are increased subjects with hepatic impairment. There are insufficient data to recommend dose adjustment of zidovudine in patients with impaired hepatic function or liver cirrhosis [see Dosage and Administration (2.6)].

Pediatric Patients: Zidovudine pharmacokinetics have been evaluated in HIV-1 infected pediatric subjects (Table 9).

Patients Aged 3 Months to 12 Years: Overall, zidovudine pharmacokinetics in pediatric patients older than 3 months are similar to those in adult patients. Proportional increases in plasma zidovudine concentrations were observed following administration of oral solution from 90 to 240 mg per m2 every 6 hours. Oral bioavailability, terminal half-life, and oral clearance were comparable to adult values. As in adult subjects, the major route of elimination was by metabolism to GZDV. After IV dosing, about 29% of the dose was excreted in the urine unchanged, and about 45% of the dose was excreted as GZDV [see Dosage and Administration (2.2)].

Patients Aged Less than 3 Months: Zidovudine pharmacokinetics have been evaluated in pediatric subjects from birth to 3 months of life. Zidovudine elimination was determined immediately following birth in 8 neonates who were exposed to zidovudine in utero. The half-life was 13.0 ± 5.8 hours. In neonates less than or equal to 14 days old, bioavailability was greater, total body clearance was slower, and half-life was longer than in pediatric subjects older than 14 days. For dose recommendations for neonates [see Dosage and Administration (2.3)].

Table 9. Zidovudine Pharmacokinetic Parameters in Pediatric Subjectsa

aData presented as mean ± standard deviation except where noted.

bMedian [range]

Parameter
Birth to 14 Days of Age
14 Days to 3 Months of Age
3 Months to 12 Years of Age
Oral bioavailability (%)
89 ± 19
(n = 15)
61 ± 19
(n = 17)
65 ± 24
(n = 18)
CSF:plasma ratio
no data
no data
0.68 [0.03 to 3.25]b
(n = 38)
CL (L/h/kg)
0.65 ± 0.29
(n = 18)
1.14 ± 0.24
(n = 16)
1.85 ± 0.47
(n = 20)
Elimination half-life (h)
3.1 ± 1.2
(n = 21)
1.9 ± 0.7
(n = 18)
1.5 ± 0.7
(n = 21)

Pregnancy: Zidovudine pharmacokinetics have been studied in a Phase I trial of 8 women during the last trimester of pregnancy. Zidovudine pharmacokinetics were similar to those of nonpregnant adults. Consistent with passive transmission of the drug across the placenta, zidovudine concentrations in neonatal plasma at birth were essentially equal to those in maternal plasma at delivery [see Use in Specific Populations (8.1)].

Although data are limited, methadone maintenance therapy in 5 pregnant women did not appear to alter zidovudine pharmacokinetics.

Geriatric Patients: Zidovudine pharmacokinetics have not been studied in subjects over 65 years of age.

Gender: A pharmacokinetic trial in healthy male (n = 12) and female (n = 12) subjects showed no differences in zidovudine AUC when a single dose of zidovudine was administered as the 300-mg zidovudine tablet.

Drug Interactions

[See Drug Interactions (7).]

Table 10. Effect of Co-administered Drugs on Zidovudine AUC*

↑ = Increase; ↓ = Decrease; ↔ = no significant change; AUC = Area under the concentration versus time curve; CI = Confidence interval.

* Estimated range of percent difference. † This table is not all inclusive.
Note: ROUTINE DOSE MODIFICATION OF ZIDOVUDINE IS NOT WARRANTED WITH COADMINISTRATION OF THE FOLLOWING DRUGS.
Coadministered Drug and Dose
Zidovudine Oral Dose
n
Zidovudine
Concentrations
Concentration of Coadministered Drug
AUC
Variability
Atovaquone
750 mg every 12 h with food
200 mg every 8 h
14
↑31%
Range:
23% to 78%† 

Clarithromycin 500 mg twice daily
100 mg every 4 h x 7 days
4
↓12%
Range:  
↓34% to ↑14% b
Not Reported
Fluconazole
400 mg daily
200 mg every 8 h
12
↑74%
95%
CI: 54% to 98%
Not Reported
Lamivudine 300 mg every 12 h
single 200 mg
12
↑13%
90%
CI: 2% to 27%

Methadone
30 to 90 mg daily
200 mg every 4 h
9
↑43%
Range:
16% to 64%† 

Nelfinavir
750 mg every 8 h x 7 to 10 days
single 200 mg
11
↓35%
Range:
28% to 41% b

Probenecid
500 mg every 6 h x 2 days
2 mg/kg every 8 h x 3 days
3
↑106%
Range:
100% to 170%† 
Not Assessed
Rifampin
600 mg daily x 14 days
200 mg every 8 h x 14 days
8
↓47%
90% CI:
41% to 53%
Not Assessed
Ritonavir
300 mg every 6 h x 4 days
200 mg every 8 h x 4 days
9
↓25%
95% CI:
15% to 34%

Valproic acid
250 mg or 500 mg every 8 h x 4 days
100 mg every 8 h x 4 days
6
↑80%
Range:
64% to 130%† 
Not Assessed

Phenytoin: Phenytoin plasma levels have been reported to be low in some patients receiving zidovudine, while in one case a high level was documented. However, in a pharmacokinetic interaction trial in which 12 HIV-1-positive volunteers received a single 300-mg phenytoin dose alone and during steady-state zidovudine conditions (200 mg every 4 hours), no change in phenytoin kinetics was observed. Although not designed to optimally assess the effect of phenytoin on zidovudine kinetics, a 30% decrease in oral zidovudine clearance was observed with phenytoin.

Ribavirin: In vitro data indicate ribavirin reduces phosphorylation of lamivudine, stavudine, and zidovudine. However, no pharmacokinetic (e.g., plasma concentrations or intracellular triphosphorylated active metabolite concentrations) or pharmacodynamic (e.g., loss of HIV-1 /HCV virologic suppression) interaction was observed when ribavirin and lamivudine (n = 18), stavudine (n = 10), or zidovudine (n = 6) were coadministered as part of a multi-drug regimen to HIV-1/HCV co-infected subjects [see Warnings and Precautions (5.5)].

Microbiology

Mechanism of Action

Zidovudine is a synthetic nucleoside analogue. Intracellularly, zidovudine is phosphorylated to its active 5'-triphosphate metabolite, zidovudine triphosphate (ZDV-TP). The principal mode of action of ZDV-TP is inhibition of reverse transcriptase (RT) via DNA chain termination after incorporation of the nucleotide analogue. ZDV-TP is a weak inhibitor of the cellular DNA polymerases α and γ and has been reported to be incorporated into the DNA of cells in culture.

Antiviral Activity

The antiviral activity of zidovudine against HIV-1 was assessed in a number of cell lines including monocytes and fresh human peripheral blood lymphocytes. The EC50 and EC90 values for zidovudine were 0.01 to 0.49 microM (1 microM = 0.27 mcg per mL) and 0.1 to 9 microM, respectively. HIV-1 from therapy-naive subjects with no amino acid substitutions associated with resistance gave median EC50 values of 0.011 microM (range: 0.005 to 0.110 microM) from Virco (n = 92 baseline samples) and 0.0017 microM (0.006 to 0.0340 microM) from Monogram Biosciences (n = 135 baseline samples). The EC50 values of zidovudine against different HIV-1 clades (A-G) ranged from 0.00018 to 0.02 microM, and against HIV-2 isolates from 0.00049 to 0.004 microM. Zidovudine was not antagonistic to tested anti-HIV agents with the exception of stavudine where an antagonistic relationship with zidovudine has been demonstrated in cell culture. Ribavirin has been found to inhibit the phosphorylation of zidovudine in cell culture.

Resistance

HIV-1 isolates with reduced susceptibility to zidovudine have been selected in cell culture and were also recovered from subjects treated with zidovudine. Genotypic analyses of the isolates selected in cell culture and recovered from zidovudine-treated subjects showed thymidine analog mutation (TAMs) substitutions in the HIV-1 RT (M41L, D67N, K70R, L210W, T215Y or F, and K219E/R/H/Q/N/Q) that confer zidovudine resistance. In general, higher levels of resistance were associated with greater number of substitutions. In some subjects harboring zidovudine-resistant virus at baseline, phenotypic sensitivity to zidovudine was restored by 12 weeks of treatment with lamivudine and zidovudine.

Cross-Resistance

Cross-resistance has been observed among NRTIs. TAM substitutions are selected by zidovudine and confer cross-resistance to abacavir, didanosine, stavudine, and tenofovir.

           

How Supplied/Storage and Handling

Zidovudine Syrup (colorless to pale yellow strawberry flavored clear solution) containing 50mg of Zidovudine in each teaspoon (5mL) in plastic bottles of 240 mL [NDC no. 53104-0105-9].

Store at 20° to 25°C (68° to 77 °F). (see USP Controlled Room Temperature).

(web3)