Ultracet
Name: Ultracet
- Ultracet brand name
- Ultracet side effects
- Ultracet drug
- Ultracet mg
- Ultracet ultracet tablet
- Ultracet ultracet dosage
- Ultracet action
- Ultracet effects of
- Ultracet the effects of
- Ultracet therapeutic effect
- Ultracet dosage
- Ultracet 600 mg
- Ultracet oral dose
- Ultracet tablet
Ultracet Overview
What are some side effects that I need to call my doctor about right away?
WARNING/CAUTION: Even though it may be rare, some people may have very bad and sometimes deadly side effects when taking a drug. Tell your doctor or get medical help right away if you have any of the following signs or symptoms that may be related to a very bad side effect:
- Signs of an allergic reaction, like rash; hives; itching; red, swollen, blistered, or peeling skin with or without fever; wheezing; tightness in the chest or throat; trouble breathing or talking; unusual hoarseness; or swelling of the mouth, face, lips, tongue, or throat.
- Signs of liver problems like dark urine, feeling tired, not hungry, upset stomach or stomach pain, light-colored stools, throwing up, or yellow skin or eyes.
- Signs of low mood (depression), thoughts of killing yourself, nervousness, emotional ups and downs, thinking that is not normal, anxiety, or lack of interest in life.
- Very bad dizziness or passing out.
- Trouble breathing, slow breathing, or shallow breathing.
- Noisy breathing.
- Feeling very sleepy.
- Very hard stools (constipation).
- Very bad belly pain.
- Feeling very tired or weak.
- Chest pain or pressure or a fast heartbeat.
- Feeling confused.
- Not able to pass urine or change in how much urine is passed.
- Pale skin.
- Change in eyesight.
- Seizures.
- A very bad skin reaction (Stevens-Johnson syndrome/toxic epidermal necrolysis) may happen. It can cause very bad health problems that may not go away, and sometimes death. Get medical help right away if you have signs like red, swollen, blistered, or peeling skin (with or without fever); red or irritated eyes; or sores in your mouth, throat, nose, or eyes.
- A very bad and sometimes deadly health problem called serotonin syndrome may happen. The risk may be greater if you take this medicine with drugs for depression, migraines, or certain other drugs. Call your doctor right away if you have agitation; change in balance; confusion; hallucinations; fever; fast or abnormal heartbeat; flushing; muscle twitching or stiffness; seizures; shivering or shaking; sweating a lot; very bad diarrhea, upset stomach, or throwing up; or very bad headache.
If OVERDOSE is suspected
If you think there has been an overdose, call your poison control center or get medical care right away. Be ready to tell or show what was taken, how much, and when it happened.
Dosage Forms and Strengths
Ultracet tablets each contain 37.5 mg of tramadol hydrochloride and 325 mg of acetaminophen. The tablets are light yellow, coated, capsule-shaped, and debossed with "O-M" on one side and "650" on the other.
Drug Interactions
Table 2 includes clinically significant interactions with Ultracet.
Inhibitors of CYP2D6 | |
Clinical Impact: | The concomitant use of Ultracet and CYP2D6 inhibitors may result in an increase in the plasma concentration of tramadol and a decrease in the plasma concentration of M1, particularly when an inhibitor is added after a stable dose of Ultracet is achieved. Since M1 is a more potent µ-opioid agonist, decreased M1 exposure could result in decreased therapeutic effects, and may result in signs and symptoms of opioid withdrawal in patients who had developed physical dependence to tramadol. Increased tramadol exposure can result in increased or prolonged therapeutic effects and increased risk for serious adverse events including seizures and serotonin syndrome. After stopping a CYP2D6 inhibitor, as the effects of the inhibitor decline, the tramadol plasma concentration will decrease and the M1 plasma concentration will increase which could increase or prolong therapeutic effects but also increase adverse reactions related to opioid toxicity, and may cause potentially fatal respiratory depression [see Clinical Pharmacology (12.3)]. |
Intervention: | If concomitant use of a CYP2D6 inhibitor is necessary, follow patients closely for adverse reactions including opioid withdrawal, seizures and serotonin syndrome. If a CYP2D6 inhibitor is discontinued, consider lowering Ultracet dosage until stable drug effects are achieved. Follow patients closely for adverse events including respiratory depression and sedation. |
Examples | Quinidine, fluoxetine, paroxetine and bupropion |
Inhibitors of CYP3A4 | |
Clinical Impact: | The concomitant use of Ultracet and CYP3A4 inhibitors can increase the plasma concentration of tramadol and may result in a greater amount of metabolism via CYP2D6 and greater levels of M1. Follow patients closely for increased risk of serious adverse events including seizures and serotonin syndrome, and adverse reactions related to opioid toxicity including potentially fatal respiratory depression, particularly when an inhibitor is added after a stable dose of Ultracet is achieved. After stopping a CYP3A4 inhibitor, as the effects of the inhibitor decline, the tramadol plasma concentration will decrease [see Clinical Pharmacology (12.3)], resulting in decreased opioid efficacy and possibly signs and symptoms of opioid withdrawal in patients who had developed physical dependence to tramadol. |
Intervention: | If concomitant use is necessary, consider dosage reduction of Ultracet until stable drug effects are achieved. Follow patients closely for seizures and serotonin syndrome, and signs of respiratory depression and sedation at frequent intervals. If a CYP3A4 inhibitor is discontinued, consider increasing the Ultracet dosage until stable drug effects are achieved and follow patients for signs and symptoms of opioid withdrawal. |
Examples | Macrolide antibiotics (e.g., erythromycin), azole-antifungal agents (e.g. ketoconazole), protease inhibitors (e.g., ritonavir) |
CYP3A4 Inducers | |
Clinical Impact: | The concomitant use of Ultracet and CYP3A4 inducers can decrease the plasma concentration of tramadol [see Clinical Pharmacology (12.3)], resulting in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence to tramadol. After stopping a CYP3A4 inducer, as the effects of the inducer decline, the tramadol plasma concentration will increase [see Clinical Pharmacology (12.3)], which could increase or prolong both the therapeutic effects and adverse reactions, and may cause serious respiratory depression, seizures and serotonin syndrome. |
Intervention: | If concomitant use is necessary, consider increasing the Ultracet dosage until stable drug effects are achieved. Follow patients for signs of opioid withdrawal. If a CYP3A4 inducer is discontinued, consider Ultracet dosage reduction and monitor for seizures and serotonin syndrome, and signs of sedation and respiratory depression. Patients taking carbamazepine, a CYP3A4 inducer, may have a significantly reduced analgesic effect of tramadol. Because carbamazepine increases tramadol metabolism and because of the seizure risk associated with tramadol, concomitant administration of Ultracet and carbamazepine is not recommended. |
Examples: | Rifampin, carbamazepine, phenytoin |
Benzodiazepines and Other Central Nervous System (CNS) Depressants | |
Clinical Impact: | Due to additive pharmacologic effect, the concomitant use of benzodiazepines or other CNS depressants, including alcohol, can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death. |
Intervention: | Reserve concomitant prescribing of these drugs for use in patients for whom alternative treatment options are inadequate. Limit dosages and durations to the minimum required. Follow patients closely for signs of respiratory depression and sedation [see Warnings and Precautions (5.7)]. |
Examples: | Benzodiazepines and other sedatives/hypnotics, anxiolytics, tranquilizers, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol. |
Serotonergic Drugs | |
Clinical Impact: | The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. |
Intervention: | If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment. Discontinue Ultracet if serotonin syndrome is suspected. |
Examples: | Selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), triptans, 5-HT3 receptor antagonists, drugs that affect the serotonin neurotransmitter system (e.g., mirtazapine, trazodone, tramadol), monoamine oxidase (MAO) inhibitors (those intended to treat psychiatric disorders and also others, such as linezolid and intravenous methylene blue). |
Monoamine Oxidase Inhibitors (MAOIs) | |
Clinical Impact: | MAOI interactions with opioids may manifest as serotonin syndrome [see Warnings and Precautions (5.8)] or opioid toxicity (e.g., respiratory depression, coma) [see Warnings and Precautions (5.2)]. |
Intervention: | Do not use Ultracet in patients taking MAOIs or within 14 days of stopping such treatment. |
Examples: | phenelzine, tranylcypromine, linezolid |
Mixed Agonist/Antagonist and Partial Agonist Opioid Analgesics | |
Clinical Impact: | May reduce the analgesic effect of Ultracet and/or precipitate withdrawal symptoms. |
Intervention: | Avoid concomitant use. |
Examples: | butorphanol, nalbuphine, pentazocine, buprenorphine |
Muscle Relaxants | |
Clinical Impact: | Tramadol may enhance the neuromuscular blocking action of skeletal muscle relaxants and produce an increased degree of respiratory depression. |
Intervention: | Monitor patients for signs of respiratory depression that may be greater than otherwise expected and decrease the dosage of Ultracet and/or the muscle relaxant as necessary. |
Diuretics | |
Clinical Impact: | Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. |
Intervention: | Monitor patients for signs of diminished diuresis and/or effects on blood pressure and increase the dosage of the diuretic as needed. |
Anticholinergic Drugs | |
Clinical Impact: | The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. |
Intervention: | Monitor patients for signs of urinary retention or reduced gastric motility when Ultracet is used concomitantly with anticholinergic drugs. |
Digoxin | |
Clinical Impact: | Post-marketing surveillance of tramadol has revealed rare reports of digoxin toxicity. |
Intervention: | Follow patients for signs of digoxin toxicity and adjust dosage of digoxin as needed. |
Warfarin | |
Clinical Impact: | Post-marketing surveillance of tramadol has revealed rare reports of alteration of warfarin effect, including elevation of prothrombin times. |
Intervention: | Monitor the prothrombin time of patients on warfarin for signs of an interaction and adjust the dosage of warfarin as needed. |
Drug Abuse and Dependence
Controlled Substance
Ultracet contains tramadol, a Schedule IV controlled substance.
Abuse
Ultracet contains tramadol, a substance with a high potential for abuse similar to other opioids and can be abused and is subject to misuse, addiction, and criminal diversion [see Warnings and Precautions (5.1)].
All patients treated with opioids require careful monitoring for signs of abuse and addiction, since use of opioid analgesic products carries the risk of addiction even under appropriate medical use.
Prescription drug abuse is the intentional non-therapeutic use of a prescription drug, even once, for its rewarding psychological or physiological effects.
Drug addiction is a cluster of behavioral, cognitive, and physiological phenomena that develop after repeated substance use and includes: a strong desire to take the drug, difficulties in controlling its use, persisting in its use despite harmful, or potentially harmful, consequences, a higher priority given to drug use than to other activities and obligations, increased tolerance, and sometimes a physical withdrawal.
"Drug seeking" behavior is very common in persons with substance use disorders. Drug seeking tactics include emergency calls or visits near the end of office hours, refusal to undergo appropriate examination, testing or referral, repeated "loss" of prescriptions, tampering with prescriptions, and reluctance to provide prior medical records or contact information for other treating physician(s). "Doctor shopping" (visiting multiple prescribers) to obtain additional prescriptions is common among drug abusers and people suffering from untreated addiction. Preoccupation with achieving adequate pain relief can be appropriate behavior in a patient with poor pain control.
Abuse and addiction are separate and distinct from physical dependence and tolerance. Health care providers should be aware that addiction may not be accompanied by concurrent tolerance and symptoms of physical dependence in all addicts. In addition, abuse of opioids can occur in the absence of true addiction.
Ultracet, like other opioids, can be diverted for non-medical use into illicit channels of distribution. Careful record-keeping of prescribing information, including quantity, frequency, and renewal requests, as required by state and federal law, is strongly advised.
Proper assessment of the patient, proper prescribing practices, periodic re-evaluation of therapy, and proper dispensing and storage are appropriate measures that help to limit abuse of opioid drugs.
Risks Specific to Abuse of Ultracet
Ultracet is for oral use only. Abuse of Ultracet poses a risk of overdose and death. The risk is increased with concurrent abuse of Ultracet with alcohol and other central nervous system depressants.
Parenteral drug abuse is commonly associated with transmission of infectious diseases such as hepatitis and HIV.
Dependence
Both tolerance and physical dependence can develop during chronic opioid therapy. Tolerance is the need for increasing doses of opioids to maintain a defined effect such as analgesia (in the absence of disease progression or other external factors). Tolerance may occur to both the desired and undesired effects of drugs, and may develop at different rates for different effects.
Physical dependence results in withdrawal symptoms after abrupt discontinuation or a significant dosage reduction of a drug. Withdrawal also may be precipitated through the administration of drugs with opioid antagonist activity (e.g., naloxone, nalmefene), mixed agonist/antagonist analgesics (e.g., pentazocine, butorphanol, nalbuphine), or partial agonists (e.g., buprenorphine). Physical dependence may not occur to a clinically significant degree until after several days to weeks of continued opioid usage.
Ultracet should not be abruptly discontinued in a physically dependent patient [see Dosage and Administration (2.4)]. If Ultracet is abruptly discontinued in a physically-dependent patient, a withdrawal syndrome may occur. Some or all of the following can characterize this syndrome: restlessness, lacrimation, rhinorrhea, yawning, perspiration, chills, myalgia, and mydriasis. Other signs and symptoms also may develop, including irritability, anxiety, backache, joint pain, weakness, abdominal cramps, insomnia, nausea, anorexia, vomiting, diarrhea, or increased blood pressure, respiratory rate, or heart rate.
Infants born to mothers physically dependent on opioids will also be physically dependent and may exhibit respiratory difficulties and withdrawal signs [see Use in Specific Populations (8.1)].
Ultracet - Clinical Pharmacology
The following information is based on studies of tramadol alone or acetaminophen alone, except where otherwise noted:
Mechanism of Action
Ultracet contains tramadol, an opioid agonist and inhibitor of norepinephrine and serotonin re-uptake, and acetaminophen. Although the mode of action of tramadol is not completely understood, the analgesic effect of tramadol is believed to be due to both binding to µ-opioid receptors and weak inhibition of reuptake of norepinephrine and serotonin.
Opioid activity of tramadol is due to both low affinity binding of the parent compound and higher affinity binding of the O-demethylated metabolite M1 to µ-opioid receptors. In animal models, M1 is up to 6 times more potent than tramadol in producing analgesia and 200 times more potent in µ-opioid binding. Tramadol-induced analgesia is only partially antagonized by the opiate antagonist naloxone in several animal tests. The relative contribution of both tramadol and M1 to human analgesia is dependent upon the plasma concentrations of each compound [see Clinical Pharmacology (12.3)].
Tramadol has been shown to inhibit reuptake of norepinephrine and serotonin in vitro, as have some other opioid analgesics. These mechanisms may contribute independently to the overall analgesic profile of tramadol.
Acetaminophen is a non-opioid, non-salicylate analgesic. The site and mechanism for the analgesic effect of acetaminophen has not been determined but is thought to primarily involve central actions.
Pharmacodynamics
Effects on the Central Nervous System
Tramadol produces respiratory depression by direct action on brain stem respiratory centers. The respiratory depression involves a reduction in the responsiveness of the brain stem respiratory centers to both increases in carbon dioxide tension and electrical stimulation.
Tramadol causes miosis, even in total darkness. Pinpoint pupils are a sign of opioid overdose but are not pathognomonic (e.g., pontine lesions of hemorrhagic or ischemic origins may produce similar findings). Marked mydriasis rather than miosis may be seen due to hypoxia in overdose situations.
Effects on the Gastrointestinal Tract and Other Smooth Muscle
Tramadol causes a reduction in motility associated with an increase in smooth muscle tone in the antrum of the stomach and duodenum. Digestion of food in the small intestine is delayed and propulsive contractions are decreased. Propulsive peristaltic waves in the colon are decreased, while tone may be increased to the point of spasm resulting in constipation. Other opioid-induced effects may include a reduction in biliary and pancreatic secretions, spasm of sphincter of Oddi, and transient elevations in serum amylase.
Effects on the Cardiovascular System
Tramadol produces peripheral vasodilation which may result in orthostatic hypotension or syncope. Manifestations of histamine release and/or peripheral vasodilation may include pruritus, flushing, red eyes, sweating, and/or orthostatic hypotension.
The effect of oral tramadol on the QTcF interval was evaluated in a double-blind, randomized, four-way crossover, placebo- and positive- (moxifloxacin) controlled study in 68 adult male and female healthy subjects. At a 600 mg/day dose (1.5-fold the maximum immediate-release daily dose), the study demonstrated no significant effect on the QTcF interval.
Effects on the Endocrine System
Opioids inhibit the secretion of adrenocorticotropic hormone (ACTH), cortisol, and luteinizing hormone (LH) in humans [see Warnings and Precautions (5.11), Adverse Reactions (6.2)]. They also stimulate prolactin, growth hormone (GH) secretion, and pancreatic secretion of insulin and glucagon.
Chronic use of opioids may influence the hypothalamic-pituitary-gonadal axis, leading to androgen deficiency that may manifest as low libido, impotence, erectile dysfunction, amenorrhea, or infertility. The causal role of opioids in the clinical syndrome of hypogonadism is unknown because the various medical, physical, lifestyle, and psychological stressors that may influence gonadal hormone levels have not been adequately controlled for in studies conducted to date [see Adverse Reactions (6.2)].
Effects on the Immune System
Opioids have been shown to have a variety of effects on components of the immune system in in vitro and animal models. The clinical significance of these findings is unknown. Overall, the effects of opioids appear to be modestly immunosuppressive.
Concentration–Efficacy Relationships
The minimum effective analgesic concentration will vary widely among patients, especially among patients who have been previously treated with potent opioid agonists. The minimum effective analgesic concentration of tramadol for any individual patient may increase over time due to an increase in pain, the development of a new pain syndrome and/or the development of analgesic tolerance [see Dosage and Administration (2.1)].
Concentration–Adverse Reaction Relationships
There is a relationship between increasing tramadol plasma concentration and increasing frequency of dose-related opioid adverse reactions such as nausea, vomiting, CNS effects, and respiratory depression. In opioid-tolerant patients, the situation may be altered by the development of tolerance to opioid-related adverse reactions [see Dosage and Administration (2.1, 2.2)].
Pharmacokinetics
Tramadol is administered as a racemate and both the [-] and [+] forms of both tramadol and M1 are detected in the circulation.
Absorption
The absolute bioavailability of tramadol from Ultracet tablets has not been determined. Tramadol has a mean absolute bioavailability of approximately 75% following administration of a single 100 mg oral dose of ULTRAM tablets. The mean peak plasma concentration of racemic tramadol and M1 after administration of two Ultracet tablets occurs at approximately two and three hours, respectively, post-dose.
The pharmacokinetics of plasma tramadol and acetaminophen following oral administration of one Ultracet tablet are shown in Table 3. Tramadol has a slower absorption and longer half-life when compared to acetaminophen.
Parameter* | (+)-Tramadol | (-)-Tramadol | (+)-M1 | (-)-M1 | acetaminophen | |||||
---|---|---|---|---|---|---|---|---|---|---|
* For acetaminophen, Cmax was measured as mcg/mL. | ||||||||||
Cmax (ng/mL) | 64.3 | (9.3) | 55.5 | (8.1) | 10.9 | (5.7) | 12.8 | (4.2) | 4.2 | (0.8) |
tmax (h) | 1.8 | (0.6) | 1.8 | (0.7) | 2.1 | (0.7) | 2.2 | (0.7) | 0.9 | (0.7) |
CL/F (mL/min) | 588 | (226) | 736 | (244) | - | - | - | - | 365 | (84) |
t1/2 (h) | 5.1 | (1.4) | 4.7 | (1.2) | 7.8 | (3.0) | 6.2 | (1.6) | 2.5 | (0.6) |
A single-dose pharmacokinetic study of Ultracet in volunteers showed no drug interactions between tramadol and acetaminophen.
Upon multiple oral dosing to steady state, however, the bioavailability of tramadol and metabolite M1 was lower for the combination tablets compared to tramadol administered alone. The decrease in AUC was 14% for (+)-tramadol, 10.4% for (-)-tramadol, 11.9% for (+)-M1, and 24.2% for (-)-M1. The cause of this reduced bioavailability is not clear.
Peak plasma concentrations of acetaminophen occur within one hour and are not affected by co-administration with tramadol. Following single- or multiple-dose administration of Ultracet, no significant change in acetaminophen pharmacokinetics was observed when compared to acetaminophen given alone.
Food Effect
When Ultracet was administered with food, the time to peak plasma concentration was delayed for approximately 35 minutes for tramadol and almost one hour for acetaminophen. However, peak plasma concentrations, and the extents of absorption, of tramadol and acetaminophen were not affected. The clinical significance of this difference is unknown.
Distribution
The volume of distribution of tramadol was 2.6 and 2.9 L/kg in male and female subjects, respectively, following a 100 mg intravenous dose. The binding of tramadol to human plasma proteins is approximately 20% and binding also appears to be independent of concentration up to 10 mcg/mL. Saturation of plasma protein binding occurs only at concentrations outside the clinically relevant range.
Acetaminophen appears to be widely distributed throughout most body tissues except fat. Its apparent volume of distribution is about 0.9 L/kg. A relative small portion (~20%) of acetaminophen is bound to plasma protein.
Elimination
Tramadol is eliminated primarily through metabolism by the liver and the metabolites are eliminated primarily by the kidneys. The mean (SD) apparent total clearance of tramadol after a single 37.5 mg dose is 588 (226) mL/min for the (+) isomer and 736 (244) mL/min for the (-) isomer. The plasma elimination half-lives of racemic tramadol and M1 are approximately 5–6 and 7 hours, respectively, after administration of Ultracet. The apparent plasma elimination half-life of racemic tramadol increased to 7–9 hours upon multiple dosing of Ultracet.
The half-life of acetaminophen is about 2 to 3 hours in adults. It is somewhat shorter in children and somewhat longer in neonates and in cirrhotic patients. Acetaminophen is eliminated from the body primarily by formation of glucuronide and sulfate conjugates in a dose dependent manner.
Metabolism
Following oral administration, tramadol is extensively metabolized by a number of pathways, including CYP2D6 and CYP3A4, as well as by conjugation of parent and metabolites. The major metabolic pathways appear to be N- and O-demethylation and glucuronidation or sulfation in the liver. Metabolite M1 (O-desmethyltramadol) is pharmacologically active in animal models. Formation of M1 is dependent on CYP2D6 and as such is subject to inhibition, which may affect the therapeutic response [see Drug Interactions (7)].
Approximately 7% of the population has reduced activity of the CYP2D6 isoenzyme of cytochrome P450. These individuals are "poor metabolizers" of debrisoquine, dextromethorphan, and tricyclic antidepressants, among other drugs. Based on a population PK analysis of Phase 1 studies in healthy subjects, concentrations of tramadol were approximately 20% higher in "poor metabolizers" versus "extensive metabolizers," while M1 concentrations were 40% lower. In vitro drug interaction studies in human liver microsomes indicate that inhibitors of CYP2D6 such as fluoxetine and its metabolite norfluoxetine, amitriptyline, and quinidine inhibit the metabolism of tramadol to various degrees. The full pharmacological impact of these alterations in terms of either efficacy or safety is unknown.
Acetaminophen is primarily metabolized in the liver by first-order kinetics and involves three principal separate pathways:
a) conjugation with glucuronide; b) conjugation with sulfate; and c) oxidation via the cytochrome, P450-dependent, mixed-function oxidase enzyme pathway to form a reactive intermediate metabolite, which conjugates with glutathione and is then further metabolized to form cysteine and mercapturic acid conjugates. The principal cytochrome P450 isoenzyme involved appears to be CYP2E1, with CYP1A2 and CYP3A4 as additional pathways.In adults, the majority of acetaminophen is conjugated with glucuronic acid and, to a lesser extent, with sulfate. These glucuronide-, sulfate-, and glutathione-derived metabolites lack biologic activity. In premature infants, newborns, and young infants, the sulfate conjugate predominates.
Excretion
Approximately 30% of the tramadol dose is excreted in the urine as unchanged drug, whereas 60% of the dose is excreted as metabolites.
Less than 9% of acetaminophen is excreted unchanged in the urine.
Special Populations
Hepatic Impairment
Pharmacokinetics of tramadol was studied in patients with mild or moderate hepatic impairment after receiving multiple doses of tramadol extended-release 100 mg. The exposure of (+)-and (-)-tramadol was similar in mild and moderate hepatic impairment patients in comparison to patients with normal hepatic function. However, exposure of (+)- and (-)-M1 decreased ~50% with increased severity of the hepatic impairment (from normal to mild and moderate). The pharmacokinetics of tramadol after the administration of tramadol extended-release has not been studied in patients with severe hepatic impairment. After the administration of tramadol immediate-release tablets to patients with advanced cirrhosis of the liver, tramadol area under the plasma concentration time curve was larger and the tramadol and M1 half-lives were longer than subjects with normal hepatic function [see Use in Specific Populations (8.6)].
Renal Impairment
Impaired renal function results in a decreased rate and extent of excretion of tramadol and its active metabolite, M1. The pharmacokinetics of tramadol were studied in patients with mild or moderate renal impairment after receiving multiple doses of tramadol extended-release 100 mg. There is no consistent trend observed for tramadol exposure related to renal function in patients with mild (CLcr: 50–80 mL/min) or moderate (CLcr: 30–50 mL/min) renal impairment in comparison to patients with normal renal function. However, exposure of M1 increased 20–40% with increased severity of the renal impairment (from normal to mild and moderate). tramadol extended-release has not been studied in patients with severe renal impairment (CLcr < 30 mL/min). The total amount of tramadol and M1 removed during a 4-hour dialysis period is less than 7% of the administered dose [see Dosage and Administration (2.3), Use in Specific Populations (8.7)].
Geriatric Population
A population pharmacokinetic analysis of data obtained from a clinical trial in patients with chronic pain treated with Ultracet, which included 55 patients between 65 and 75 years of age and 19 patients over 75 years of age, showed no significant changes in the pharmacokinetics of tramadol and acetaminophen in elderly patients with normal renal and hepatic function [see Use in Specific Populations (8.5)]
Sex
Tramadol clearance was 20% higher in female subjects compared to males on four Phase 1 studies of Ultracet in 50 male and 34 female healthy subjects.
Poor / Extensive Metabolizers, CYP2D6
The formation of the active metabolite, M1, is mediated by CYP2D6. Approximately 7% of the population has reduced activity of the CYP2D6 isoenzyme of cytochrome P-450. These individuals are "poor metabolizers" of debrisoquine, dextromethorphan, and tricyclic antidepressants, among other drugs. Based on a population PK analysis of Phase I studies with immediate-release tablets in healthy subjects, concentrations of tramadol were approximately 20% higher in "poor metabolizers" versus "extensive metabolizers," while M1 concentrations were 40% lower.
Drug Interaction Studies
CYP2D6 Inhibitors
In vitro drug interaction studies in human liver microsomes indicate that inhibitors of CYP2D6 (fluoxetine, norfluoxetine, amitriptyline, and quinidine) inhibit the metabolism of tramadol to various degrees, suggesting that concomitant administration of these compounds could result in increases in tramadol concentrations and decreased concentrations of M1. The full pharmacological impact of these alterations in terms of either efficacy or safety is unknown.
Quinidine
Tramadol is metabolized to M1 by CYP2D6. A study was conducted to examine the effect of quinidine, a selective inhibitor of CYP2D6, on the pharmacokinetics of tramadol by administering 200 mg quinidine two hours before the administration of 100 mg tramadol extended release tablet. The results demonstrated that the exposure of tramadol increased 50–60% and the exposure of M1 decreased 50–60%. In vitro drug interaction studies in human liver microsomes indicate that tramadol has no effect on quinidine metabolism [see Warnings and Precautions (5.5) and Drug Interactions (7)].
Cimetidine
Concomitant administration of tramadol and cimetidine does not result in clinically significant changes in tramadol pharmacokinetics. Therefore, no alteration of the Ultracet dosage regimen is recommended.
CYP3A4 Inhibitors and Inducers
Tramadol is metabolized by CYP3A4. Administration of CYP3A4 inhibitors, such as ketoconazole and erythromycin, or CYP3A4 inducers, such as rifampin and St. John's Wort, with tramadol may affect the metabolism of tramadol leading to altered tramadol exposure [see Warnings and Precautions (5.2 and 5.5) and Drug Interactions (7)].
Carbamazepine
Carbamazepine, a CYP3A4 inducer, increases tramadol metabolism. Patients taking carbamazepine may have a significantly reduced analgesic effect of tramadol. Concomitant administration of tramadol and carbamazepine is not recommended.
Potential for Tramadol to Affect Other Drugs
In vitro studies indicate that tramadol is unlikely to inhibit the CYP3A4-mediated metabolism of other drugs when tramadol is administered concomitantly at therapeutic doses. Tramadol does not appear to induce its own metabolism in humans, since observed maximal plasma concentrations after multiple oral doses are higher than expected based on single dose data.
How Supplied/Storage and Handling
Ultracet (tramadol hydrochloride/acetaminophen) tablets containing 37.5 mg tramadol hydrochloride and 325 mg acetaminophen are light yellow, coated, capsule-shaped tablets debossed with "O-M" on one side and "650" on the other and are available as follows:
100's: | NDC 50458-650-60 | Bottles of 100 tablets |
HUD 100's: | NDC 50458-650-10 | Packages of 100 unit doses in blister packs, 10 cards of 10 tablets each |
Dispense in a tight container. Store at 20 – 25°C (68 – 77°F); excursions permitted to 15 – 30°C (59 – 86°F). [see USP Controlled Room Temperature].
PRINCIPAL DISPLAY PANEL - 100 Tablet Bottle Label
NDC 50458-650-60
Ultracet® CIV
(37.5 mg tramadol
HCl/325 mg
acetaminophen
tablets)
100 tablets
Rx only.
janssen
Ultracet tramadol hydrochloride and acetaminophen tablet, coated | ||||||||||||||||||||||||
| ||||||||||||||||||||||||
| ||||||||||||||||||||||||
| ||||||||||||||||||||||||
| ||||||||||||||||||||||||
| ||||||||||||||||||||||||
|
Labeler - Janssen Pharmaceuticals, Inc. (063137772) |
Establishment | |||
Name | Address | ID/FEI | Operations |
Janssen Ortho, LLC | 805887986 | MANUFACTURE(50458-650), ANALYSIS(50458-650) |
Establishment | |||
Name | Address | ID/FEI | Operations |
Mallinckrodt, Inc. | 097722284 | API MANUFACTURE(50458-650) |
Establishment | |||
Name | Address | ID/FEI | Operations |
Proto Chemicals AG | 480008890 | API MANUFACTURE(50458-650) |
What happens if I overdose?
Seek emergency medical attention or call the Poison Help line at 1-800-222-1222. An overdose of this medicine can be fatal, especially in a child or another person using the medicine without a prescription.
Overdose symptoms may include shallow breathing, slow heartbeat, extreme weakness, cold or clammy skin, feeling light-headed, fainting, seizure, or coma.