Trivaris

Name: Trivaris

How supplied

Dosage Forms And Strengths

Single-use 0.1 mL syringe containing 8 mg (80 mg/mL) of triamcinolone acetonide suspension.

Storage And Handling

TRIVARIS™ (triamcinolone acetonide injectable suspension) 80 mg/mL is supplied in blister packs with 1 single-use glass syringe containing 8 mg in 0.1 mL as follows:

Syringe without needle: NDC 0023XXXX-XX

Storage: Keep refrigerated 36°- 46°F (2°8°C) until use. Avoid freezing and protect from light.

Allergan, Inc., Irvine, CA 92612, U.S.A. FDA revision date: 6/16/2008

Clinical pharmacology

Mechanism of Action

Naturally occurring glucocorticoids (hydrocortisone and cortisone), which also have salt-retaining properties, are used as replacement therapy in adrenocortical deficiency states. Synthetic analogs such as triamcinolone are primarily used for their anti-inflammatory effects in disorders of many organ systems.

Corticosteroids inhibit the inflammatory response to a variety of inciting agents and probably delay or slow healing. They inhibit the edema, fibrin deposition, capillary dilation, leukocyte migration, capillary proliferation, fibroblast proliferation, deposition of collagen, and scar formation associated with inflammation. There is no generally accepted explanation for the mechanism of action of ocular corticosteroids. However, corticosteroids are thought to act by the induction of phospholipase A2 inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the bio-synthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Corticosteroids are capable of producing a rise in intraocular pressure.

Intravitreal corticosteroids can down regulate the production of proinflammatory mediators, and can be used in ocular inflammatory conditions.

Pharmacokinetics

Aqueous humor pharmacokinetics of triamcinolone acetonide were assessed in 5 patients following a single intravitreal administration (4 mg) of triamcinolone acetonide. Aqueous humor samples were obtained from 5 patients (5 eyes) via an anterior chamber paracentesis on Days 1, 3, 10, 17 and 31 post-injection. Peak aqueous humor concentrations of triamcinolone acetonide ranged from 2,151 to 7,202 ng/mL, the half-life ranged from 76 to 635 hours, and the area under the concentrationtime curve (AUC0-t) ranged from 231 to 1,911 ng·h/mL. The mean elimination halflife was 18.7 ± 5.7 days in 4 nonvitrectomized eyes (4 patients). In a patient who had undergone vitrectomy (1 eye), the elimination half-life of triamcinolone acetonide was much faster (3.2 days) relative to patients that had not undergone vitrectomy.

Warnings and Precautions

Not for Intravenous Administration

Because Trivaris™ (triamcinolone acetonide injectable suspension) 80 mg/mL is a suspension, it should not be administered intravenously. Strict aseptic technique is mandatory.

Alterations in Endocrine Function

Hypothalamic-pituitary-adrenal (HPA) axis suppression, Cushing's syndrome, and hyperglycemia. Monitor patients for these conditions with chronic use.

Corticosteroids can produce reversible HPA axis suppression with the potential for glucocorticosteroid insufficiency after withdrawal of treatment. Drug induced secondary adrenocortical insufficiency may be minimized by gradual reduction of dosage. This type of relative insufficiency may persist for months after discontinuation of therapy; therefore, in any situation of stress occurring during that period, hormone therapy should be reinstituted.

Since mineralocorticoid secretion may be impaired, salt and/or a mineralocorticoid should be administered concurrently. Mineralocorticoid supplementation is of particular importance in infancy.

Metabolic clearance of corticosteroids is decreased in hypothyroid patients and increased in hyperthyroid patients. Changes in thyroid status of the patient may necessitate adjustment in dosage.

Increased Risks Related to Infections

  • Corticosteroids may increase the risks related to infections with any pathogen, including viral, bacterial, fungal, protozoan, or helminthic infections. The degree to which the dose, route and duration of corticosteroid administration correlates with the specific risks of infection is not well characterized, however, with increasing doses of corticosteroids, the rate of occurrence of infectious complications increases.
  • Corticosteroids may mask some signs of infection and may reduce resistance to new infections.
  • Corticosteroids may exacerbate infections and increase risk of disseminated infection. The use of Trivaris™ in active tuberculosis should be restricted to those cases of fulminating or disseminated tuberculosis in which the corticosteroid is used for the management of the disease in conjunction with an appropriate antituberculous regimen.
  • Chickenpox and measles can have a more serious or even fatal course in non-immune children or adults on corticosteroids. In children or adults who have not had these diseases, particular care should be taken to avoid exposure. If a patient is exposed to chickenpox, prophylaxis with varicella zoster immune globulin (VZIG) may be indicated. If a patient is exposed to measles, prophylaxis with pooled intramuscular immunoglobulin (IG) may be indicated. If chickenpox develops, treatment with antiviral agents may be considered.
  • Corticosteroids should be used with great care in patients with known or suspected Strongyloides (threadworm) infestation. In such patients, corticosteroid-induced immunosuppression may lead to Strongyloides hyperinfection and dissemination with widespread larval migration, often accompanied by severe enterocolitis and potentially fatal gram-negative septicemia.
  • Corticosteroids may exacerbate systemic fungal infections and therefore should not be used in the presence of such infections unless they are needed to control drug reactions.
  • Corticosteroids may increase risk of reactivation or exacerbation of latent infection. If corticosteroids are indicated in patients with latent tuberculosis or tuberculin reactivity, close observation is necessary as reactivation of the disease may occur. During prolonged corticosteroid therapy, these patients should receive chemoprophylaxis.
  • Corticosteroids may activate latent amebiasis. Therefore, it is recommended that latent or active amebiasis be ruled out before initiating corticosteroid therapy in any patient who has spent time in the tropics or in any patient with unexplained diarrhea.

Ophthalmic Effects

Prolonged use of corticosteroids may produce posterior subcapsular cataracts, glaucoma with possible damage to the optic nerves, and may enhance the establishment of secondary ocular infections due to fungi or viruses.

The use of oral corticosteroids is not recommended in the treatment of optic neuritis and may lead to an increase in the risk of new episodes.

Intraocular pressure may become elevated in some individuals. If steroid therapy is continued for more than 6 weeks, intraocular pressure should be monitored.

Corticosteroids should be used cautiously in patients with a history of ocular herpes simplex because of possible corneal perforation. Corticosteroids should not be used in active ocular herpes simplex.

Endophthalmitis

The rate of infectious culture positive endophthalmitis is 0.5%. Proper aseptic techniques should always be used when administering triamcinolone acetonide.

In addition, patients should be monitored following the injection to permit early treatment should an infection occur.

Alterations in Cardiovascular/Renal Function

Corticosteroids can cause elevation of blood pressure, salt and water retention, and increased excretion of potassium and calcium. These effects are less likely to occur with the synthetic derivatives except when used in large doses. Dietary salt restriction and potassium supplementation may be necessary. These agents should be used with caution in patients with hypertension, congestive heart failure, or renal insufficiency.

Literature reports suggest an association between use of corticosteroids and left ventricular free wall rupture after a recent myocardial infarction; therefore, therapy with corticosteroids should be used with caution in these patients.

Behavioral and Mood Disturbances

Corticosteroid use may be associated with central nervous system effects ranging from euphoria, insomnia, mood swings, personality changes, and severe depression, to frank psychotic manifestations. Also, existing emotional instability or psychotic tendencies may be aggravated by corticosteroids.

Use in Patients with Gastrointestinal Disorders

There is an increased risk of gastrointestinal perforation in patients with certain GI disorders. Signs of GI perforation, such as peritoneal irritation, may be masked in patients receiving corticosteroids.

Corticosteroids should be used with caution if there is a probability of impending perforation, abscess or other pyogenic infections; diverticulitis; fresh intestinal anastomoses; and active or latent peptic ulcer.

Decreases in Bone Density

Corticosteroids decrease bone formation and increase bone resorption both through their effect on calcium regulation (i.e., decreasing absorption and increasing excretion) and inhibition of osteoblast function. This, together with a decrease in the protein matrix of the bone secondary to an increase in protein catabolism, and reduced sex hormone production, may lead to inhibition of bone growth in children and adolescents and the development of osteoporosis at any age. Special consideration should be given to patients at increased risk of osteoporosis (i.e., postmenopausal women) before initiating corticosteroid therapy and bone density should be monitored in patients on long term corticosteroid therapy.

Vaccination

Administration of live or live, attenuated vaccines is contraindicated in patients receiving immunosuppressive doses of corticosteroids. Killed or inactivated vaccines may be administered, however, the response to such vaccines can not be predicted. Immunization procedures may be undertaken in patients who are receiving corticosteroids as replacement therapy, e.g., for Addison's disease.

While on corticosteroid therapy, patients should not be vaccinated against smallpox. Other immunization procedures should not be undertaken in patients who are on corticosteroids, especially on high dose, because of possible hazards of neurological complications and a lack of antibody response.

Effect on Growth and Development

Long-term use of corticosteroids can have negative effects on growth and development in children.

Growth and development of pediatric patients on prolonged corticosteroid therapy should be carefully monitored.

Use in Pregnancy

Triamcinolone acetonide can cause fetal harm when administered to a pregnant woman. Human and animal studies suggest that use of corticosteroids during the first trimester of pregnancy is associated with an increased risk of orofacial clefts, intrauterine growth restriction and decreased birth weight. If this drug is used during pregnancy, or if the patient becomes pregnant while using this drug, the patient should be apprised of the potential hazard to the fetus. (see USE IN SPECIFIC POPULATIONS,8.1).

Neuromuscular Effects

Although controlled clinical trials have shown corticosteroids to be effective in speeding the resolution of acute exacerbations of multiple sclerosis, they do not show that they affect the ultimate outcome or natural history of the disease. The studies do show that relatively high doses of corticosteroids are necessary to demonstrate a significant effect. (see DOSAGE AND ADMINISTRATION,2.4).

An acute myopathy has been observed with the use of high doses of corticosteroids, most often occurring in patients with disorders of neuromuscular transmission (e.g., myasthenia gravis), or in patients receiving concomitant therapy with neuromuscular blocking drugs (e.g., pancuronium). This acute myopathy is generalized, may involve ocular and respiratory muscles, and may result in quadriparesis. Elevation of creatine kinase may occur. Clinical improvement or recovery after stopping corticosteroids may require weeks to years.

Kaposi's Sarcoma

Kaposi's sarcoma has been reported to occur in patients receiving corticosteroid therapy, most often for chronic conditions. Discontinuation of corticosteroids may result in clinical improvement.

Intra-articular and Soft Tissue Administration

Intra-articularly injected corticosteroids may be systemically absorbed.

Appropriate examination of any joint fluid present is necessary to exclude a septic process.

A marked increase in pain accompanied by local swelling, further restriction of joint motion, fever, and malaise are suggestive of septic arthritis. If this complication occurs and the diagnosis of sepsis is confirmed, appropriate antimicrobial therapy should be instituted.

Injection of a steroid into an infected site is to be avoided. Local injection of a steroid into a previously infected joint is not usually recommended.

Corticosteroid injection into unstable joints is generally not recommended.

Intra-articular injection may result in damage to joint tissues (see ADVERSE REACTIONS, 6.8).

Adverse Reactions

(listed alphabetically under each subsection)

The following adverse reactions may be associated with corticosteroid therapy:

Allergic Reactions

Anaphylactoid reaction, anaphylaxis, angioedema.

Cardiovascular

Bradycardia, cardiac arrest, cardiac arrhythmias, cardiac enlargement, circulatory collapse, congestive heart failure, fat embolism, hypertension, hypertrophic cardiomyopathy in premature infants, myocardial rupture following recent myocardial infarction (see WARNINGS AND PRECAUTIONS,5.5), pulmonary edema, syncope, tachycardia, thromboembolism, thrombophlebitis, vasculitis.

Dermatologic

Acne, allergic dermatitis, cutaneous and subcutaneous atrophy, dry scaly skin, ecchymoses and petechiae, edema, erythema, hyperpigmentation, hypopigmentation, impaired wound healing, increased sweating, lupus erythematosus-like lesions, purpura, rash, sterile abscess, striae, suppressed reactions to skin tests, thin fragile skin, thinning scalp hair, urticaria.

Endocrine

Decreased carbohydrate and glucose tolerance, development of cushingoid state, glycosuria, hirsutism, hypertrichosis, increased requirements for insulin or oral hypoglycemic agents in diabetes, manifestations of latent diabetes mellitus, menstrual irregularities, secondary adrenocortical and pituitary unresponsiveness (particularly in times of stress, as in trauma, surgery, or illness), suppression of growth in pediatric patients.

Fluid and Electrolyte Disturbances

Congestive heart failure in susceptible patients, fluid retention, hypokalemic alkalosis, potassium loss, sodium retention.

Gastrointestinal

Abdominal distention, bowel/bladder dysfunction (after intrathecal administration), elevation in serum liver enzyme levels (usually reversible upon discontinuation), hepatomegaly, increased appetite, nausea, pancreatitis, peptic ulcer with possible perforation and hemorrhage, perforation of the small and large intestine (particularly in patients with inflammatory bowel disease), ulcerative esophagitis.

Metabolic

Negative nitrogen balance due to protein catabolism.

Musculoskeletal

Aseptic necrosis of femoral and humeral heads, calcinosis (following intra-articular or intralesional use), Charcot-like arthropathy, loss of muscle mass, muscle weakness, osteoporosis, pathologic fracture of long bones, post injection flare (following intra-articular use), steroid myopathy, tendon rupture, vertebral compression fractures.

Neurologic/Psychiatric

Convulsions, depression, emotional instability, euphoria, headache, increased intracranial pressure with papilledema (pseudotumor cerebri) usually following discontinuation of treatment, insomnia, mood swings, neuritis, neuropathy, paresthesia, personality changes, psychic disorders, vertigo. Arachnoiditis, meningitis, paraparesis/paraplegia, and sensory disturbances have occurred after intrathecal administration

Ophthalmic

Abnormal sensation in eye, anterior chamber cells, anterior chamber flare, cataract, cataract cortical, cataract nuclear, cataract subcapsular, conjunctival haemorrhage, exophthalmos, eye irritation, eye pain, eye pruritus, foreign body sensation in eyes, glaucoma, intraocular pressure increased, injection site haemorrhage, lacrimation increased, vitreous detachment, vitreous floaters and rare instances of blindness associated with intravitreal or periocular injections.

Other

Abnormal fat deposits, decreased resistance to infection, hiccups, increased or decreased motility and number of spermatozoa, malaise, moon face, weight gain.

Overdosage

Treatment of acute overdosage is by supportive and symptomatic therapy. For chronic overdosage in the face of severe disease requiring continuous steroid therapy, the dosage of the corticosteroid may be reduced only temporarily, or alternate day treatment may be introduced.

Trivaris Description

Trivaris™ (triamcinolone acetonide injectable suspension) 80 mg/mL is a synthetic glucocorticoid corticosteroid with anti-inflammatory action. This formulation is suitable for intravitreal, intramuscular, and intra-articular use. This formulation is not for intravenous injection. Each syringe of the sterile aqueous gel suspension contains 8 mg triamcinolone acetonide in 0.1 mL (8% suspension) in a HYLADUR™ vehicle containing w/w percents of 2.3% sodium hyaluronate; 0.63% sodium chloride; 0.3% sodium phosphate, dibasic; 0.04% sodium phosphate, monobasic; and water for injection. Trivaris™ is preservative-free with a pH of 7.0 to 7.4. The chemical name for triamcinolone acetonide is 9α-fluoro-11β,16α,17,21-tetrahydroxypregna-1,4-diene-3,20-dione cyclic 16,17-acetal with acetone.

Its structural formula is:

MW 434.50 with a molecular formula of C24H31FO6. Triamcinolone acetonide occurs as a white to cream-colored crystalline powder having not more than a slight odor, and is practically insoluble in water and very soluble in alcohol.

Trivaris - Clinical Pharmacology

Mechanism of Action

Naturally occurring glucocorticoids (hydrocortisone and cortisone), which also have salt-retaining properties, are used as replacement therapy in adrenocortical deficiency states. Synthetic analogs such as triamcinolone are primarily used for their anti-inflammatory effects in disorders of many organ systems.

Corticosteroids inhibit the inflammatory response to a variety of inciting agents and probably delay or slow healing. They inhibit the edema, fibrin deposition, capillary dilation, leukocyte migration, capillary proliferation, fibroblast proliferation, deposition of collagen, and scar formation associated with inflammation. There is no generally accepted explanation for the mechanism of action of ocular corticosteroids. However, corticosteroids are thought to act by the induction of phospholipase A2 inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the bio-synthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Corticosteroids are capable of producing a rise in intraocular pressure.

Intravitreal corticosteroids can down regulate the production of proinflammatory mediators, and can be used in ocular inflammatory conditions.

Pharmacokinetics

Aqueous humor pharmacokinetics of triamcinolone acetonide were assessed in 5 patients following a single intravitreal administration (4 mg) of triamcinolone acetonide. Aqueous humor samples were obtained from 5 patients (5 eyes) via an anterior chamber paracentesis on Days 1, 3, 10, 17 and 31 post-injection. Peak aqueous humor concentrations of triamcinolone acetonide ranged from 2,151 to 7,202 ng/mL, the half-life ranged from 76 to 635 hours, and the area under the concentration-time curve (AUC0-t) ranged from 231 to 1,911 μg∙h/mL. The mean elimination half-life was 18.7 ± 5.7 days in 4 nonvitrectomized eyes (4 patients). In a patient who had undergone vitrectomy (1 eye), the elimination half-life of triamcinolone acetonide was much faster (3.2 days) relative to patients that had not undergone vitrectomy.

Patient Counseling Information

Patients should discuss with their physician if they have had recent or ongoing infections or if they have recently received a vaccine.

There are a number of medicines that can interact with corticosteroids such as triamcinolone. Patients should inform their health-care provider of all the medicines they are taking, including over-the-counter and prescription medicines (such as phenytoin, diuretics, digitalis or digoxin, rifampin, amphotericin B, cyclosporine, insulin or diabetes medicines, ketoconazole, estrogens including birth control pills and hormone replacement therapy, blood thinners such as warfarin, aspirin or other NSAIDs, barbiturates), dietary supplements, and herbal products. If patients are taking any of these drugs, alternate therapy, dosage adjustment, and/or special tests may be needed during the treatment.

Patients should be advised of common adverse reactions that could occur with corticosteroid use to include elevated intraocular pressure, cataracts, fluid retention, alteration in glucose tolerance, elevation in blood pressure, behavioral and mood changes, increased appetite and weight gain.

In the days following intravitreal administration of Trivaris™, patients are at risk for the development of endophthalmitis. If the eye becomes red, sensitive to light, painful or develops a change in vision, the patients should seek immediate care from an ophthalmologist.

© 2008 Allergan, Inc.
Irvine, CA 92612, U.S.A.
® and ™ marks owned by Allergan, Inc.

72003US10X

Trivaris 
triamcinolone acetonide injection, suspension
Product Information
Product Type Item Code (Source) NDC:0023-3457
Route of Administration INTRAVITREAL, INTRAMUSCULAR, INTRA-ARTICULAR DEA Schedule     
Active Ingredient/Active Moiety
Ingredient Name Basis of Strength Strength
triamcinolone acetonide (triamcinolone) triamcinolone 8 mg  in 0.1 mL
Inactive Ingredients
Ingredient Name Strength
sodium hyaluronate  
sodium chloride  
sodium phosphate  
dibasic  
sodium phosphate  
monobasic  
water  
Packaging
# Item Code Package Description
1 NDC:0023-3457-01 0.1 mL (0.1 MILLILITER) in 1 SYRINGE, GLASS
Revised: 12/2008  

Before receiving Trivaris

You should not receive Trivaris if you are allergic to triamcinolone, or if you have a fungal infection anywhere in your body.

If you have any of these other conditions, you may need a dose adjustment or special tests to safely receive Trivaris:

  • herpes infection of your eye;

  • eye conditions such as cataract or glaucoma;

  • diabetes;

  • high blood pressure, congestive heart failure;

  • any type of bacterial, fungal, or viral infection (including tuberculosis);

  • a thyroid disorder;

  • a muscle disorder such as myasthenia gravis;

  • diverticulitis, stomach or intestinal ulcer, or recent stomach surgery; or

  • if you have recently had a heart attack.

FDA pregnancy category D. Do not use Trivaris if you are pregnant. It could harm the unborn baby. Use effective birth control, and tell your doctor if you become pregnant during treatment. Triamcinolone can pass into breast milk and may harm a nursing baby. Do not use Trivaris without telling your doctor if you are breast-feeding a baby.

This medication can decrease bone formation which could lead to osteoporosis, especially with long-term use. Talk with your doctor about your specific risk of bone loss while using Trivaris.

Steroids can affect growth in children. Talk with your doctor if you think your child is not growing at a normal rate while using this medication.

Trivaris side effects

Get emergency medical help if you have any of these signs of an allergic reaction to Trivaris: hives; difficulty breathing; swelling of your face, lips, tongue, or throat. Call your doctor at once if you have a serious side effect such as:

  • problems with your vision, blurred vision, or seeing halos around lights;

  • eye swelling, redness, severe discomfort, crusting or drainage (may be signs of infection);

  • large red or purple spots on your skin;

  • fast or slow heart rate;

  • feeling short of breath, swelling in your hands or feet;

  • dangerously high blood pressure (severe headache, blurred vision, buzzing in your ears, anxiety, confusion, chest pain, uneven heartbeats, seizure);

  • severe dizziness or nausea;

  • severe depression, changes in mood or behavior, seizures (convulsions); or

  • severe pain in your upper stomach.

Less serious Trivaris side effects may include:

  • mild eye discomfort;

  • headaches, back aches, weakness;

  • bloating, appetite changes, weight gain;

  • changes in the shape or location of body fat (especially in your arms, legs, face, neck, breasts, and waist), roundness in your face;

  • increased acne or facial hair;

  • menstrual problems (in women), impotence or loss of interest in sex (in men);

  • dry skin, thinning skin, changes in skin color;

  • bruising, sweating more than usual; or

  • any wound that will not heal.

This is not a complete list of side effects and others may occur. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

(web3)