Tetrabenazine Tablets
Name: Tetrabenazine Tablets
- Tetrabenazine Tablets missed dose
- Tetrabenazine Tablets uses
- Tetrabenazine Tablets drug
- Tetrabenazine Tablets adverse effects
- Tetrabenazine Tablets dosage
- Tetrabenazine Tablets tablet
- Tetrabenazine Tablets mg
- Tetrabenazine Tablets 50 mg
What happens if i miss a dose (xenazine)?
Take the missed dose as soon as you remember. Skip the missed dose if it is almost time for your next scheduled dose. Do not take extra medicine to make up the missed dose.
Where can i get more information?
Your pharmacist can provide more information about tetrabenazine.
Remember, keep this and all other medicines out of the reach of children, never share your medicines with others, and use this medication only for the indication prescribed.
Every effort has been made to ensure that the information provided by Cerner Multum, Inc. ('Multum') is accurate, up-to-date, and complete, but no guarantee is made to that effect. Drug information contained herein may be time sensitive. Multum information has been compiled for use by healthcare practitioners and consumers in the United States and therefore Multum does not warrant that uses outside of the United States are appropriate, unless specifically indicated otherwise. Multum's drug information does not endorse drugs, diagnose patients or recommend therapy. Multum's drug information is an informational resource designed to assist licensed healthcare practitioners in caring for their patients and/or to serve consumers viewing this service as a supplement to, and not a substitute for, the expertise, skill, knowledge and judgment of healthcare practitioners. The absence of a warning for a given drug or drug combination in no way should be construed to indicate that the drug or drug combination is safe, effective or appropriate for any given patient. Multum does not assume any responsibility for any aspect of healthcare administered with the aid of information Multum provides. The information contained herein is not intended to cover all possible uses, directions, precautions, warnings, drug interactions, allergic reactions, or adverse effects. If you have questions about the drugs you are taking, check with your doctor, nurse or pharmacist.
Copyright 1996-2013 Cerner Multum, Inc. Version: 2.02. Revision date: 12/15/2010.
Your use of the content provided in this service indicates that you have read,understood and agree to the End-User License Agreement,which can be accessed by clicking on this link.
Side effects
The following serious adverse reactions are described below and elsewhere in the labeling:
- Depression and suicidality [see WARNINGS AND PRECAUTIONS]
- Akathisia, restlessness, and agitation [see WARNINGS AND PRECAUTIONS]
- Parkinsonism [see WARNINGS AND PRECAUTIONS]
- Dysphagia [see WARNINGS AND PRECAUTIONS]
- Sedation and somnolence [see WARNINGS AND PRECAUTIONS]
Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
During its development, XENAZINE was administered to 773 unique subjects and patients. The conditions and duration of exposure to XENAZINE varied greatly, and included single and multiple dose clinical pharmacology studies in healthy volunteers (n=259) and open-label (n=529) and double-blind studies (n=84) in patients.
In a randomized, 12-week, placebo-controlled clinical trial of HD patients, adverse reactions were more common in the XENAZINE group than in the placebo group. Forty-nine of 54 (91%) patients who received XENAZINE experienced one or more adverse reactions at any time during the study. The most common adverse reactions were (over 10%, and at least 5% greater than placebo) were sedation/somnolence, fatigue, insomnia, depression, akathisia, and nausea.
Adverse Reactions Occurring in ≥ 4% PatientsThe number and percentage of the most common adverse reactions that occurred at any time during the study in ≥ 4% of XENAZINE-treated patients, and with a greater frequency than in placebo-treated patients, are presented in Table 1.
Table 1: Adverse Reactions in a 12-Week, Double-Blind, Placebo-Controlled Trial in Patients with Huntington's Disease
Adverse Reactionm | XENAZINE n = 54 % | Placebo n = 30 % |
Sedation/somnolence | 31 | 3 |
Insomnia | 22 | 0 |
Depression | 19 | 0 |
Anxiety/anxiety aggravated | 15 | 3 |
Irritability | 9 | 3 |
Decreased appetite | 4 | 0 |
Obsessive reaction | 4 | 0 |
Akathisia | 19 | 0 |
Balance difficulty | 9 | 0 |
Parkinsonism/bradykine sia | 9 | 0 |
Dizziness | 4 | 0 |
Dysarthria | 4 | 0 |
Unsteady gait | 4 | 0 |
Headache | 4 | 3 |
Nausea | 13 | 7 |
Vomiting | 6 | 3 |
Fatigue | 22 | 13 |
Fall | 15 | 13 |
Laceration (head) | 6 | 0 |
Ecchymosis | 6 | 0 |
Upper respiratory tract infection | 11 | 7 |
Shortness of breath | 4 | 0 |
Bronchitis | 4 | 0 |
Dysuria | 4 | 0 |
Dose escalation was discontinued or dosage of study drug was reduced because of one or more adverse reactions in 28 of 54 (52%) patients randomized to XENAZINE. These adverse reactions consisted of sedation (15), akathisia (7), parkinsonism (4), depression (3), anxiety (2), fatigue (1) and diarrhea (1). Some patients had more than one AR and are, therefore, counted more than once.
Adverse Reactions Due to Extrapyramidal SymptomsTable 2 describes the incidence of events considered to be extrapyramidal adverse reactions which occurred at a greater frequency in XENAZINE-treated patients compared to placebo-treated patients.
Table 2: Adverse Reactions Due to Extrapyramidal Symptoms in a 12-Week, Double-Blind, Placebo-Controlled Trial in Patients with Huntington's disease
XENAZINE n = 54% | Placebo n = 30% | |
Akathisia 1 | 19% | 0 |
Extrapyramidal event 2 | 15% | 0 |
Any extrapyramidal event | 33% | 0 |
1Patients with the following adverse event preferred terms were counted in this category: akathisia, hyperkinesia, restlessness. 2Patients with the following adverse event preferred terms were counted in this category: bradykinesia, parkinsonism, extrapyramidal disorder, hypertonia. |
Patients may have had events in more than one category.
Postmarketing Experience
The following adverse reactions have been identified during post-approval use of XENAZINE. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Nervous system disorders: tremor
Psychiatric disorders: confusion, worsening aggression
Respiratory, thoracic and mediastinal disorders: pneumonia
Skin and subcutaneous tissue disorders: hyperhidrosis, skin rash
Read the entire FDA prescribing information for Xenazine (Tetrabenazine Tablets)
Read More »Dosage Forms and Strengths
Tetrabenazine Tablets are available in the following strengths:
The 12.5 mg Tetrabenazine Tablets are white to off white, circular, flat faced beveled edge, non-scored, uncoated tablets debossed with '1' on one side.
The 25 mg Tetrabenazine Tablets are yellow, circular, flat faced beveled edge uncoated tablets debossed with '179' on one side and scored on other side.
Warnings and Precautions
Clinical Worsening and Adverse Effects
Huntington's disease is a progressive disorder characterized by changes in mood, cognition, chorea, rigidity, and functional capacity over time. In a 12-week controlled trial, tetrabenazine was also shown to cause slight worsening in mood, cognition, rigidity, and functional capacity. Whether these effects persist, resolve, or worsen with continued treatment is unknown.
Prescribers should periodically re-evaluate the need for tetrabenazine in their patients by assessing the beneficial effect on chorea and possible adverse effects, including depression, cognitive decline, parkinsonism, dysphagia, sedation/somnolence, akathisia, restlessness and disability. It may be difficult to distinguish between drug-induced side-effects and progression of the underlying disease; decreasing the dose or stopping the drug may help the clinician distinguish between the two possibilities. In some patients, underlying chorea itself may improve over time, decreasing the need for tetrabenazine.
Depression and Suicidality
Patients with Huntington's disease are at increased risk for depression, suicidal ideation or behaviors (suicidality). Tetrabenazine increases the risk for suicidality in patients with HD. All patients treated with tetrabenazine should be observed for new or worsening depression or suicidality. If depression or suicidality does not resolve, consider discontinuing treatment with tetrabenazine.
In a 12-week, double-blind placebo-controlled study in patients with chorea associated with Huntington's disease, 10 of 54 patients (19%) treated with tetrabenazine were reported to have an adverse event of depression or worsening depression compared to none of the 30 placebo-treated patients. In two open-label studies (in one study, 29 patients received tetrabenazine for up to 48 weeks; in the second study, 75 patients received tetrabenazine for up to 80 weeks), the rate of depression/worsening depression was 35%.
In all of the HD chorea studies of tetrabenazine (n=187), one patient committed suicide, one attempted suicide, and six had suicidal ideation.
Clinicians should be alert to the heightened risk of suicide in patients with Huntington's disease regardless of depression indices. Reported rates of completed suicide among individuals with Huntington's disease ranged from 3 to 13% and over 25% of patients attempt suicide at some point in their illness.
Patients, their caregivers, and families should be informed of the risks of depression, worsening depression, and suicidality associated with tetrabenazine and should be instructed to report behaviors of concern promptly to the treating physician. Patients with HD who express suicidal ideation should be evaluated immediately.
Laboratory Tests
Before prescribing a daily dose of tetrabenazine that is greater than 50 mg per day, patients should be genotyped to determine if they express the drug metabolizing enzyme, CYP2D6. CYP2D6 testing is necessary to determine whether patients are poor metabolizers (PMs), extensive (EMs) or intermediate metabolizers (IMs) of tetrabenazine.
Patients who are PMs of tetrabenazine will have substantially higher levels of the primary drug metabolites (about 3-fold for α-HTBZ and 9-fold for β-HTBZ) than patients who are EMs. The dosage should be adjusted according to a patient’s CYP2D6 metabolizer status. In patients who are identified as CYP2D6 PMs, the maximum recommended total daily dose is 50 mg and the maximum recommended single dose is 25 mg [see Dosage and Administration (2.2), Use in Specific Populations (8.7), Clinical Pharmacology (12.3)].
Neuroleptic Malignant Syndrome (NMS)
A potentially fatal symptom complex sometimes referred to as Neuroleptic Malignant Syndrome (NMS) has been reported in association with tetrabenazine and other drugs that reduce dopaminergic transmission [see Warnings and Precautions (5.12), Drug Interactions (7.6)]. Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia). Additional signs may include elevated creatinine phosphokinase, myoglobinuria, rhabdomyolysis, and acute renal failure. The diagnosis of NMS can be complicated; other serious medical illness (e.g., pneumonia, systemic infection), and untreated or inadequately treated extrapyramidal disorders can present with similar signs and symptoms. Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, drug fever, and primary central nervous system pathology.
The management of NMS should include (1) immediate discontinuation of tetrabenazine and other drugs not essential to concurrent therapy; (2) intensive symptomatic treatment and medical monitoring; and (3) treatment of any concomitant serious medical problems for which specific treatments are available. There is no general agreement about specific pharmacological treatment regimens for NMS.
Recurrence of NMS has been reported. If treatment with tetrabenazine is needed after recovery from NMS, patients should be monitored for signs of recurrence.
Akathisia, Restlessness, and Agitation
In a 12-week, double-blind, placebo-controlled study in patients with chorea associated with HD, akathisia was observed in 10 (19%) of tetrabenazine-treated patients and 0% of placebo-treated patients. In an 80-week open-label study, akathisia was observed in 20% of tetrabenazine-treated patients. Akathisia was not observed in a 48-week open-label study. Patients receiving tetrabenazine should be monitored for the presence of akathisia. Patients receiving tetrabenazine should also be monitored for signs and symptoms of restlessness and agitation, as these may be indicators of developing akathisia. If a patient develops akathisia, the tetrabenazine dose should be reduced; however, some patients may require discontinuation of therapy.
Parkinsonism
Tetrabenazine can cause parkinsonism. In a 12-week double-blind, placebo-controlled study in patients with chorea associated with HD, symptoms suggestive of parkinsonism (i.e., bradykinesia, hypertonia and rigidity) were observed in 15% of tetrabenazine-treated patients compared to 0% of placebo-treated patients. In 48-week and 80-week open-label studies, symptoms suggestive of parkinsonism were observed in 10% and 3% of tetrabenazine-treated patients, respectively. Because rigidity can develop as part of the underlying disease process in Huntington’s disease, it may be difficult to distinguish between this drug-induced side-effect and progression of the underlying disease process. Drug-induced parkinsonism has the potential to cause more functional disability than untreated chorea for some patients with Huntington’s disease. If a patient develops parkinsonism during treatment with tetrabenazine, dose reduction should be considered; in some patients, discontinuation of therapy may be necessary.
Dysphagia
Dysphagia is a component of HD. However, drugs that reduce dopaminergic transmission have been associated with esophageal dysmotility and dysphagia. Dysphagia may be associated with aspiration pneumonia. In a 12-week, double-blind, placebo-controlled study in patients with chorea associated with HD, dysphagia was observed in 4% of tetrabenazine-treated patients and 3% of placebo-treated patients. In 48-week and 80-week open-label studies, dysphagia was observed in 10% and 8% of tetrabenazine-treated patients, respectively. Some of the cases of dysphagia were associated with aspiration pneumonia. Whether these events were related to treatment is unknown.
Sedation and Somnolence
Sedation is the most common dose-limiting adverse reaction of tetrabenazine. In a 12-week, double-blind, placebo-controlled trial in patients with chorea associated with HD, sedation/somnolence occurred in 17/54 (31%) tetrabenazine-treated patients and in 1 (3%) placebo-treated patient. Sedation was the reason upward titration of tetrabenazine was stopped and/or the dose of tetrabenazine was decreased in 15/54 (28%) patients. In all but one case, decreasing the dose of tetrabenazine resulted in decreased sedation. In 48-week and 80-week open-label studies, sedation/somnolence occurred in 17% and 57% of tetrabenazine treated patients, respectively. In some patients, sedation occurred at doses that were lower than recommended doses.
Patients should not perform activities requiring mental alertness to maintain the safety of themselves or others, such as operating a motor vehicle or operating hazardous machinery, until they are on a maintenance dose of tetrabenazine and know how the drug affects them.
QTc Prolongation
Tetrabenazine causes a small increase (about 8 msec) in the corrected QT (QTc) interval. QT prolongation can lead to development of torsade de pointes-type ventricular tachycardia with the risk increasing as the degree of prolongation increases [see Clinical Pharmacology (12.2)].
The use of tetrabenazine should be avoided in combination with other drugs that are known to prolong QTc, including antipsychotic medications (e.g., chlorpromazine, haloperidol, thioridazine, ziprasidone), antibiotics (e.g., moxifloxacin), Class 1A (e.g., quinidine, procainamide), and Class III (e.g., amiodarone, sotalol) antiarrhythmic medications or any other medications known to prolong the QTc interval [see Drug Interactions (7.5)]
Tetrabenazine should also be avoided in patients with congenital long QT syndrome and in patients with a history of cardiac arrhythmias. Certain circumstances may increase the risk of the occurrence of torsade de pointes and/or sudden death in association with the use of drugs that prolong the QTc interval, including (1) bradycardia; (2) hypokalemia or hypomagnesemia; (3) concomitant use of other drugs that prolong the QTc interval; and (4) presence of congenital prolongation of the QT interval [see Clinical Pharmacology (12.2)].
Hypotension and Orthostatic Hypotension
Tetrabenazine induced postural dizziness in healthy volunteers receiving single doses of 25 or 50 mg. One subject had syncope and one subject with postural dizziness had documented orthostasis. Dizziness occurred in 4% of tetrabenazine-treated patients (vs. none on placebo) in the 12-week controlled trial; however, blood pressure was not measured during these events. Monitoring of vital signs on standing should be considered in patients who are vulnerable to hypotension.
Hyperprolactinemia
Tetrabenazine elevates serum prolactin concentrations in humans. Following administration of 25 mg to healthy volunteers, peak plasma prolactin levels increased 4- to 5-fold. Tissue culture experiments indicate that approximately one third of human breast cancers are prolactin-dependent in vitro, a factor of potential importance if tetrabenazine is being considered for a patient with previously detected breast cancer. Although amenorrhea, galactorrhea, gynecomastia and impotence can be caused by elevated serum prolactin concentrations, the clinical significance of elevated serum prolactin concentrations for most patients is unknown. Chronic increase in serum prolactin levels (although not evaluated in the tetrabenazine development program) has been associated with low levels of estrogen and increased risk of osteoporosis. If there is a clinical suspicion of symptomatic hyperprolactinemia, appropriate laboratory testing should be done and consideration should be given to discontinuation of tetrabenazine.
Tardive Dyskinesia (TD)
A potentially irreversible syndrome of involuntary, dyskinetic movements may develop in patients treated with neuroleptic drugs. In an animal model of orofacial dyskinesias, acute administration of reserpine, a monoamine depletor, has been shown to produce vacuous chewing in rats. Although the pathophysiology of tardive dyskinesia remains incompletely understood, the most commonly accepted hypothesis of the mechanism is that prolonged post-synaptic dopamine receptor blockade leads to supersensitivity to dopamine. Neither reserpine nor tetrabenazine, which are dopamine depletors, have been reported to cause clear tardive dyskinesia in humans, but as pre-synaptic dopamine depletion could theoretically lead to supersensitivity to dopamine, and tetrabenazine can cause the extrapyramidal symptoms also known to be associated with neuroleptics (e.g., parkinsonism and akathisia), physicians should be aware of the possible risk of tardive dyskinesia. If signs and symptoms of TD appear in a patient treated with tetrabenazine, drug discontinuation should be considered.
Binding to Melanin-Containing Tissues
Since tetrabenazine or its metabolites bind to melanin-containing tissues, it could accumulate in these tissues over time. This raises the possibility that tetrabenazine may cause toxicity in these tissues after extended use. Neither ophthalmologic nor microscopic examination of the eye was conducted in the chronic toxicity study in dogs. Ophthalmologic monitoring in humans was inadequate to exclude the possibility of injury occurring after long-term exposure.
The clinical relevance of tetrabenazine’s binding to melanin-containing tissues is unknown. Although there are no specific recommendations for periodic ophthalmologic monitoring, prescribers should be aware of the possibility of long-term ophthalmologic effects [see Clinical Pharmacology (12.2)].
Drug Abuse and Dependence
Controlled Substance
Tetrabenazine is not a controlled substance.
Abuse
Clinical trials did not reveal patients developed drug seeking behaviors, though these observations were not systematic. Abuse has not been reported from the postmarketing experience in countries where tetrabenazine has been marketed.
As with any CNS-active drug, prescribers should carefully evaluate patients for a history of drug abuse and follow such patients closely, observing them for signs of tetrabenazine misuse or abuse (such as development of tolerance, increasing dose requirements, drug-seeking behavior).
Abrupt discontinuation of tetrabenazine from patients did not produce symptoms of withdrawal or a discontinuation syndrome; only symptoms of the original disease were observed to re-emerge [see Dosage and Administrations (2.4)].
How Supplied/Storage and Handling
How Supplied
Tetrabenazine Tablets are available in the following strengths and packages:
The 12.5 mg Tetrabenazine Tablets are white to off white, circular, flat faced beveled edge, non-scored, uncoated tablets debossed with '1' on one side.
Bottles of 112's with Child Resistant Cap ………….….. NDC 47335-277-23
The 25 mg Tetrabenazine Tablets are yellow, circular, flat faced beveled edge uncoated tablets debossed with '179' on one side and scored on other side.
Bottles of 112's with Child Resistant Cap ………….….. NDC 47335-179-23
Storage
Store Tetrabenazine Tablets at 20° to 25°C (68° to 77°F); excursions permitted between 15° and 30°C (59° and 86°F) [see USP Controlled Room Temperature].
Patient Counseling Information
Advise the patient to read the FDA-approved patient labeling (Medication Guide).
Risk of Suicidality
Inform patients and their families that tetrabenazine may increase the risk of suicidal thinking and behaviors. Counsel patients and their families to remain alert to the emergence of suicidal ideation and to report it immediately to the patient’s physician [see Contraindications (4), Warnings and Precautions (5.2)].
Risk of Depression
Inform patients and their families that tetrabenazine may cause depression or may worsen pre-existing depression. Encourage patients and their families to be alert to the emergence of sadness, worsening of depression, withdrawal, insomnia, irritability, hostility (aggressiveness), akathisia (psychomotor restlessness), anxiety, agitation, or panic attacks and to report such symptoms promptly to the patient’s physician [see Contraindications (4), Warnings and Precautions (5.2)].
Dosing of Tetrabenazine
Inform patients and their families that the dose of tetrabenazine will be increased slowly to the dose that is best for each patient. Sedation, akathisia, parkinsonism, depression, and difficulty swallowing may occur. Such symptoms should be promptly reported to the physician and the tetrabenazine may dose need to be reduced or discontinued [see Dosage and Administration (2.2)].
Risk of Sedation and Somnolence
Inform patients that tetrabenazine may induce sedation and somnolence and may impair the ability to perform tasks that require complex motor and mental skills. Advise patients that until they learn how they respond to tetrabenazine, they should be careful doing activities that require them to be alert, such as driving a car or operating machinery [see Warnings and Precautions (5.8)].
Interaction with Alcohol
Advise patients and their families that alcohol may potentiate the sedation induced by tetrabenazine [see Drug Interactions (7.4)].
Usage in Pregnancy
Advise patients and their families to notify the physician if the patient becomes pregnant or intends to become pregnant during tetrabenazine therapy, or is breast-feeding or intending to breast-feed an infant during therapy [see Use in Specific Populations (8.1)].