Virazole
Name: Virazole
- Virazole drug
- Virazole used to treat
- Virazole is used to treat
- Virazole side effects
- Virazole 120 mg
- Virazole action
- Virazole dosage
- Virazole therapeutic effect
Side effects
The description of adverse reactions is based on events from clinical studies (approximately 200 patients) conducted prior to 1986, and the controlled trial of aerosolized VIRAZOLE (ribavirin) conducted in 1989-1990. Additional data from spontaneous post-marketing reports of adverse events in individual patients have been available since 1986.
Deaths
Deaths during or shortly after treatment with aerosolized VIRAZOLE (ribavirin) have been reported in 20 cases of patients treated with VIRAZOLE (ribavirin) (12 of these patients were being treated for RSV infections). Several cases have been characterized as "possibly related" to VIRAZOLE (ribavirin) by the treating physician; these were in infants who experienced worsening respiratory status related to bronchospasm while being treated with the drug. Several other cases have been attributed to mechanical ventilator malfunction in which VIRAZOLE (ribavirin) precipitation within the ventilator apparatus led to excessively high pulmonary pressures and diminished oxygenation. In these cases the monitoring procedures described in the current package insert were not employed (see Description of Studies, WARNINGS, and DOSAGE AND ADMINISTRATION).
Pulmonary and Cardiovascular
Pulmonary function significantly deteriorated during aerosolized VIRAZOLE (ribavirin) treatment in six of six adults with chronic obstructive lung disease and in four of six asthmatic adults. Dyspnea and chest soreness were also reported in the latter group. Minor abnormalities in pulmonary function were also seen in healthy adult volunteers.
In the original study population of approximately 200 infants who received aerosolized VIRAZOLE (ribavirin) , several serious adverse events occurred in severely ill infants with life-threatening underlying diseases, many of whom required assisted ventilation. The role of VIRAZOLE (ribavirin) in these events is indeterminate. Since the drug's approval in 1986, additional reports of similar serious, though non-fatal, events have been filed infrequently. Events associated with aerosolized VIRAZOLE (ribavirin) use have included the following:
Pulmonary: Worsening of respiratory status, bronchospasm, pulmonary edema, hypoventilation, cyanosis, dyspnea, bacterial pneumonia, pneumothorax, apnea, atelectasis and ventilator dependence.
Cardiovascular: Cardiac arrest, hypotension, bradycardia and digitalis toxicity. Bigeminy, bradycardia and tachycardia have been described in patients with underlying congenital heart disease.
Some subjects requiring assisted ventilation experienced serious difficulties, due to inadequate ventilation and gas exchange. Precipitation of drug within the ventilatory apparatus, including the endotracheal tube, has resulted in increased positive end expiratory pressure and increased positive inspiratory pressure. Accumulation of fluid in tubing ("rain out") has also been noted. Measures to avoid these complications should be followed carefully (see DOSAGE AND ADMINISTRATION).
Hematologic
Although anemia was not reported with use of aerosolized VIRAZOLE (ribavirin) in controlled clinical trials, most infants treated with the aerosol have not been evaluated 1 to 2 weeks post-treatment when anemia is likely to occur. Anemia has been shown to occur frequently with experimental oral and intravenous VIRAZOLE (ribavirin) in humans. Also, cases of anemia (type unspecified), reticulocytosis and hemolytic anemia associated with aerosolized VIRAZOLE (ribavirin) use have been reported through post-marketing reporting systems. All have been reversible with discontinuation of the drug.
Other
Rash and conjunctivitis have been associated with the use of aerosolized VIRAZOLE (ribavirin) . These usually resolve within hours of discontinuing therapy. Seizures and asthenia associated with experimental intravenous VIRAZOLE (ribavirin) therapy have also been reported. Adverse Events in Health Care Workers Studies of environmental exposure to aerosolized VIRAZOLE (ribavirin) in health care workers administering care to patients receiving the drug have not detected adverse signs or symptoms related to exposure. However, 152 health care workers have reported experiencing adverse events through post-marketing surveillance. Nearly all were in individuals providing direct care to infants receiving aerosolized VIRAZOLE (ribavirin) . Of 358 events from these 152 individual health care worker reports, the most common signs and symptoms were headache (51% of reports), conjunctivitis (32%), and rhinitis, nausea, rash, dizziness, pharyngitis, or lacrimation (10-20% each). Several cases of bronchospasm and/or chest pain were also reported, usually in individuals with known underlying reactive airway disease. Several case reports of damage to contact lenses after prolonged close exposure to aerosolized VIRAZOLE (ribavirin) have also been reported. Most signs and symptoms reported as having occurred in exposed health care workers resolved within minutes to hours of discontinuing close exposure to aerosolized VIRAZOLE (ribavirin) (also see Information for Health Care Personnel).
The symptoms of RSV in adults can include headache, conjunctivitis, sore throat and/or cough, fever, hoarseness, nasal congestion and wheezing, although RSV infections in adults are typically mild and transient. Such infections represent a potential hazaid to uninfected hospital patients. It is unknown whether certain symptoms cited in reports from health care workers were due to exposure to the drug or infection with RSV. Hospitals should implement appropriate infection control procedures.
Overdose
No overdosage with VIRAZOLE (ribavirin) by aerosol administration has been reported in humans. The LDM in mice is 2 g orally and is associated with hypoactivity and gastrointestinal symptoms (estimated human equivalent dose of 0.17 g/kg, based on body surface area conversion). The mean plasma half-life after administration of aerosolized VIRAZOLE (ribavirin) for pediatric patients is 9.5 hours. VIRAZOLE (ribavirin) is concentrated and persists in red blood cells for the life of the erythrocyte (see Pharmacokinetics).
Virazole Precautions
- Difficulty breathing. This may be more common or severe if you have COPD or asthma.
- Genetic mutations. Genetic mutations have been see in animals tested with Virazole. The risk of genetic mutations and possible cancer has not been fully evaluated in humans.
- Male reproductive damage. Virazole has shown to cause harm to male reproductive organs in animals. The risk for damage in humans has not been fully evaluated.
- Low blood pressure. This may be more common or sever if you have inherited heart disease.
- Virazole may cause birth defects or the death of your unborn baby. Do not take Virazole if you or your sexual partner is pregnant or plan to be come pregnant. It is not known when it is safe to become pregnant after taking Virazole.
Do not take Virazole if you:
- have or ever had serious allergic reactions to the ingredients in Virazole.
- are pregnant or planning to become pregnant
- are breastfeeding or planning to breastfeed
- certain types of hepatitis (autoimmune hepatitis).
- certain blood disorders (hemoglobinopathies).
- severe kidney disease.
- take didanosine (Videx).
Talk to your healthcare provider before taking Virazole if you have any of these conditions.
Other Requirements
- Vials containing the lyophilized Virazole inhalation powder should be stored in a dry place at 25°C (77°F); excursions are permitted to 15°C-30°C (59°F- 86°F). Reconstituted solutions may be stored, under sterile conditions, at room temperature (20-30°C, 68-86°F) for 24 hours.
- Keep Virazole and all medicines out of the reach of children.
Uses For Virazole
Ribavirin for inhalation is used to treat severe pneumonia in infants and young children that is caused by the respiratory syncytial virus (RSV). It is given by oral inhalation, which means breathing the medicine as a fine mist through the mouth. Your child will use a special nebulizer (sprayer) that is attached to an oxygen hood, oxygen tent, or face mask .
This medicine is available only with your doctor's prescription .
Precautions While Using Virazole
It is very important that your doctor check your child's progress to make sure this medicine is working properly and to check for unwanted effects. Your child will be monitored very closely while this medicine is given .
If a woman is pregnant, being exposed to this medicine can harm the unborn baby. It is very important that all pregnant women who will be with your child in the hospital contact the doctor immediately .
What are some side effects that I need to call my doctor about right away?
WARNING/CAUTION: Even though it may be rare, some people may have very bad and sometimes deadly side effects when taking a drug. Tell your child's doctor or get medical help right away if your child has any of the following signs or symptoms that may be related to a very bad side effect:
- Signs of an allergic reaction, like rash; hives; itching; red, swollen, blistered, or peeling skin with or without fever; wheezing; tightness in the chest or throat; trouble breathing or talking; unusual hoarseness; or swelling of the mouth, face, lips, tongue, or throat.
- Signs of lung or breathing problems like shortness of breath or other trouble breathing, cough, or fever.
- Very bad dizziness or passing out.
- Fast or slow heartbeat.
- A heartbeat that does not feel normal.
- Feeling very tired or weak.
Virazole - Clinical Pharmacology
Mechanism of Action
In cell cultures the inhibitory activity of ribavirin for respiratory syncytial virus (RSV) is selective. The mechanism of action is unknown. Reversal of the in vitro antiviral activity by guanosine or xanthosine suggests ribavirin may act as an analogue of these cellular metabolites.
Microbiology
Ribavirin has demonstrated antiviral activity against RSV in vitro1 and in experimentally infected cotton rats.2 Several clinical isolates of RSV were evaluated for ribavirin susceptibility by plaque reduction in tissue culture. Plaques were reduced 85-98% by 16 mcg/mL; however, results may vary with the test system. The development of resistance has not been evaluated in vitro or in clinical trials.
In addition to the above, ribavirin has been shown to have in vitro activity against influenza A and B viruses and herpes simplex virus, but the clinical significance of these data is unknown.
Immunologic Effects
Neutralizing antibody responses to RSV were decreased in aerosolized Virazole-treated infants compared to placebo-treated infants.3 One study also showed that RSV-specific IgE antibody in bronchial secretions was decreased in patients treated with aerosolized Virazole. In rats, ribavirin administration resulted in lymphoid atrophy of the thymus, spleen and lymph nodes. Humoral immunity was reduced in guinea pigs and ferrets. Cellular immunity was also mildly depressed in animal studies. The clinical significance of these observations is unknown.
Pharmacokinetics
Assay for Virazole in human materials is by a radioimmunoassay which detects ribavirin and at least one metabolite.
Virazole brand of ribavirin, when administered by aerosol, is absorbed systemically. Four pediatric patients inhaling Virazole aerosol administered by face mask for 2.5 hours each day for 3 days had plasma concentrations ranging from 0.44 to 1.55 µM, with a mean concentration of 0.76 µM. The plasma half-life was reported to be 9.5 hours. Three pediatric patients inhaling aerosolized Virazole administered by face mask or mist tent for 20 hours each day for 5 days had plasma concentrations ranging from 1.5 to 14.3 µM, with a mean concentration of 6.8 µM.
The bioavailability of aerosolized Virazole is unknown and may depend on the mode of aerosol delivery. After aerosol treatment, peak plasma concentrations of ribavirin are 85% to 98% less than the concentration that reduced RSV plaque formation in tissue culture. After aerosol treatment, respiratory tract secretions are likely to contain ribavirin in concentrations manyfold higher than those required to reduce plaque formation. However, RSV is an intracellular virus, and it is unknown whether plasma concentrations or respiratory secretion concentrations of the drug better reflect intracellular concentrations in the respiratory tract.
In man, rats, and rhesus monkeys, accumulation of ribavirin and/or metabolites in the red blood cells has been noted, plateauing in red cells in man in about 4 days and gradually declining with an apparent half-life of 40 days (the half-life of erythrocytes). The extent of accumulation of ribavirin following inhalation therapy is not well defined.
Animal Toxicology
Ribavirin, when administered orally or as an aerosol, produced cardiac lesions in mice, rats, and monkeys, when given at doses of 30, 36 and 120 mg/kg or greater for 4 weeks or more (estimated human equivalent doses of 4.8, 12.3 and 111.4 mg/kg for a 5 kg child, or 2.5, 5.1 and 40 mg/kg for a 60 kg adult, based on body surface area adjustment). Aerosolized ribavirin administered to developing ferrets at 60 mg/kg for 10 or 30 days resulted in inflammatory and possibly emphysematous changes in the lungs. Proliferative changes were seen in the lungs following exposure at 131 mg/kg for 30 days. The significance of these findings to human administration is unknown.
Indications and Usage for Virazole
Virazole® (Ribavirin for Inhalation Solution, USP) is indicated for the treatment of hospitalized infants and young children with severe lower respiratory tract infections due to respiratory syncytial virus. Treatment early in the course of severe lower respiratory tract infection may be necessary to achieve efficacy.
Only severe RSV lower respiratory tract infection should be treated with Virazole. The vast majority of infants and children with RSV infection have disease that is mild, self-limited, and does not require hospitalization or antiviral treatment. Many children with mild lower respiratory tract involvement will require shorter hospitalization than would be required for a full course of Virazole aerosol (3 to 7 days) and should not be treated with the drug. Thus the decision to treat with Virazole should be based on the severity of the RSV infection. The presence of an underlying condition such as prematurity, immunosuppression or cardiopulmonary disease may increase the severity of clinical manifestations and complications of RSV infection.
Use of aerosolized Virazole in patients requiring mechanical ventilator assistance should be undertaken only by physicians and support staff familiar with this mode of administration and the specific ventilator being used (see WARNINGS and DOSAGE AND ADMINISTRATION).
Diagnosis
RSV infection should be documented by a rapid diagnostic method such as demonstration of viral antigen in respiratory tract secretions by immunofluorescence3,4 or ELISA5 before or during the first 24 hours of treatment. Treatment may be initiated while awaiting rapid diagnostic test results. However, treatment should not be continued without documentation of RSV infection. Non-culture antigen detection techniques may have false positive or false negative results. Assessment of the clinical situation, the time of year and other parameters may warrant reevaluation of the laboratory diagnosis.
Description of Studies
Non-Mechanically-Ventilated Infants: In two placebo-controlled trials in infants hospitalized with RSV lower respiratory tract infection, aerosolized Virazole treatment had a therapeutic effect, as judged by the reduction in severity of clinical manifestations of disease by treatment day 3.3,4 Treatment was most effective when instituted within the first 3 days of clinical illness. Virus titers in respiratory secretions were also significantly reduced with Virazole in one of these original studies.4 Additional controlled studies conducted since these initial trials of aerosolized Virazole in the treatment of RSV infection have supported these data.
Mechanically-Ventilated Infants: A randomized, double-blind, placebo-controlled evaluation of aerosolized Virazole at the recommended dose was conducted in 28 infants requiring mechanical ventilation for respiratory failure caused by documented RSV infection.6 Mean age was 1.4 months (SD, 1.7 months). Seven patients had underlying diseases predisposing them to severe infection and 21 were previously normal. Aerosolized Virazole treatment significantly decreased the duration of mechanical ventilation required (4.9 vs. 9.9 days, p=0.01) and duration of required supplemental oxygen (8.7 vs. 13.5 days, p=0.01). Intensive patient management and monitoring techniques were employed in this study. These included endotracheal tube suctioning every 1 to 2 hours; recording of proximal airway pressure, ventilatory rate, and FlO2 every hour; and arterial blood gas monitoring every 2 to 6 hours. To reduce the risk of Virazole precipitation and ventilator malfunction, heated wire tubing, two bacterial filters connected in series in the expiratory limb of the ventilator (with filter changes every 4 hours), and water column pressure release valves to monitor internal ventilator pressures were used in connecting ventilator circuits to the SPAG®-2.
Employing these techniques, no technical difficulties with Virazole administration were encountered during the study. Adverse events consisted of bacterial pneumonia in one case, staphylococcus bacteremia in one case and two cases of post-extubation stridor. None were felt to be related to Virazole administration.
Adverse Reactions
The description of adverse reactions is based on events from clinical studies (approximately 200 patients) conducted prior to 1986, and the controlled trial of aerosolized Virazole conducted in 1989-1990. Additional data from spontaneous post-marketing reports of adverse events in individual patients have been available since 1986.
Deaths
Deaths during or shortly after treatment with aerosolized Virazole have been reported in 20 cases of patients treated with Virazole (12 of these patients were being treated for RSV infections). Several cases have been characterized as “possibly related” to Virazole by the treating physician; these were in infants who experienced worsening respiratory status related to bronchospasm while being treated with the drug. Several other cases have been attributed to mechanical ventilator malfunction in which Virazole precipitation within the ventilator apparatus led to excessively high pulmonary pressures and diminished oxygenation. In these cases the monitoring procedures described in the current package insert were not employed (see Description of Studies, WARNINGS, and DOSAGE AND ADMINISTRATION).
Pulmonary and Cardiovascular
Pulmonary function significantly deteriorated during aerosolized Virazole treatment in six of six adults with chronic obstructive lung disease and in four of six asthmatic adults. Dyspnea and chest soreness were also reported in the latter group. Minor abnormalities in pulmonary function were also seen in healthy adult volunteers.
In the original study population of approximately 200 infants who received aerosolized Virazole, several serious adverse events occurred in severely ill infants with life-threatening underlying diseases, many of whom required assisted ventilation. The role of Virazole in these events is indeterminate. Since the drug’s approval in 1986, additional reports of similar serious, though non-fatal, events have been filed infrequently. Events associated with aerosolized Virazole use have included the following:
Pulmonary: Worsening of respiratory status, bronchospasm, pulmonary edema, hypoventilation, cyanosis, dyspnea, bacterial pneumonia, pneumothorax, apnea, atelectasis and ventilator dependence.
Cardiovascular: Cardiac arrest, hypotension, bradycardia and digitalis toxicity. Bigeminy, bradycardia and tachycardia have been described in patients with underlying congenital heart disease.
Some subjects requiring assisted ventilation experienced serious difficulties, due to inadequate ventilation and gas exchange. Precipitation of drug within the ventilatory apparatus, including the endotracheal tube, has resulted in increased positive end expiratory pressure and increased positive inspiratory pressure. Accumulation of fluid in tubing (“rain out”) has also been noted. Measures to avoid these complications should be followed carefully (see DOSAGE AND ADMINISTRATION).
Hematologic
Although anemia was not reported with use of aerosolized Virazole in controlled clinical trials, most infants treated with the aerosol have not been evaluated 1 to 2 weeks post-treatment when anemia is likely to occur. Anemia has been shown to occur frequently with experimental oral and intravenous Virazole in humans. Also, cases of anemia (type unspecified), reticulocytosis and hemolytic anemia associated with aerosolized Virazole use have been reported through post-marketing reporting systems. All have been reversible with discontinuation of the drug.
Other
Rash and conjunctivitis have been associated with the use of aerosolized Virazole. These usually resolve within hours of discontinuing therapy. Seizures and asthenia associated with experimental intravenous Virazole therapy have also been reported.
Adverse Events in Health Care Workers
Studies of environmental exposure to aerosolized Virazole in health care workers administering care to patients receiving the drug have not detected adverse signs or symptoms related to exposure. However, 152 health care workers have reported experiencing adverse events through post-marketing surveillance. Nearly all were in individuals providing direct care to infants receiving aerosolized Virazole. Of 358 events from these 152 individual health care worker reports, the most common signs and symptoms were headache (51% of reports), conjunctivitis (32%), and rhinitis, nausea, rash, dizziness, pharyngitis, or lacrimation (10-20% each). Several cases of bronchospasm and/or chest pain were also reported, usually in individuals with known underlying reactive airway disease. Several case reports of damage to contact lenses after prolonged close exposure to aerosolized Virazole have also been reported. Most signs and symptoms reported as having occurred in exposed health care workers resolved within minutes to hours of discontinuing close exposure to aerosolized Virazole (also see Information for Health Care Personnel).
The symptoms of RSV in adults can include headache, conjunctivitis, sore throat and/or cough, fever, hoarseness, nasal congestion and wheezing, although RSV infections in adults are typically mild and transient. Such infections represent a potential hazard to uninfected hospital patients. It is unknown whether certain symptoms cited in reports from health care workers were due to exposure to the drug or infection with RSV. Hospitals should implement appropriate infection control procedures.
To report SUSPECTED ADVERSE REACTIONS, contact Valeant Pharmaceuticals North America LLC at 1-800-321-4576 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.