Tamsulosin Hydrochloride

Name: Tamsulosin Hydrochloride

Description

Tamsulosin hydrochloride is an antagonist of alpha1A adrenoceptors in the prostate.

Tamsulosin hydrochloride is (-)-(R)-5-[2-[[2-(o-Ethoxyphenoxy) ethyl]amino]propyl]-2-methoxybenzenesulfonamide, monohydrochloride. Tamsulosin hydrochloride is a white crystalline powder that melts with decomposition at approximately 230°C. It is sparingly soluble in water and methanol, slightly soluble in glacial acetic acid and ethanol, and practically insoluble in ether.

The empirical formula of tamsulosin hydrochloride is C20H28N2O5S • HCl. The molecular weight of tamsulosin hydrochloride is 444.98. Its structural formula is:

Each FLOMAX capsule for oral administration contains tamsulosin hydrochloride, USP 0.4 mg, and the following inactive ingredients: microcrystalline cellulose; methacrylic acid copolymer dispersion; triacetin; calcium stearate; talc; gelatin; iron oxide; FD&C blue No. 2; titanium dioxide; propylene glycol; and shellac.

How supplied

Dosage Forms And Strengths

Capsule: 0.4 mg, olive green and orange hard gelatin, imprinted on one side with Flomax 0.4 mg and on the other side with BI 58

Storage And Handling

FLOMAX capsules 0.4 mg are supplied in high density polyethylene bottles containing 100 hard gelatin capsules with olive green opaque cap and orange opaque body. The capsules are imprinted on one side with Flomax 0.4 mg and on the other side with BI 58.

FLOMAX capsules 0.4 mg, 100 capsules (NDC 0597-0058-01)

Store at 25°C (77°F); excursions permitted to 15°C–30°C (59°F–86°F) [see USP Controlled Room Temperature].

Keep FLOMAX capsules and all medicines out of reach of children.

Distributed by: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877 USA. Rev: January 2016

Clinical pharmacology

Mechanism Of Action

The symptoms associated with benign prostatic hyperplasia (BPH) are related to bladder outlet obstruction, which is comprised of two underlying components: static and dynamic. The static component is related to an increase in prostate size caused, in part, by a proliferation of smooth muscle cells in the prostatic stroma. However, the severity of BPH symptoms and the degree of urethral obstruction do not correlate well with the size of the prostate. The dynamic component is a function of an increase in smooth muscle tone in the prostate and bladder neck leading to constriction of the bladder outlet. Smooth muscle tone is mediated by the sympathetic nervous stimulation of alpha1 adrenoceptors, which are abundant in the prostate, prostatic capsule, prostatic urethra, and bladder neck. Blockade of these adrenoceptors can cause smooth muscles in the bladder neck and prostate to relax, resulting in an improvement in urine flow rate and a reduction in symptoms of BPH.

Tamsulosin, an alpha1 adrenoceptor blocking agent, exhibits selectivity for alpha1 receptors in the human prostate. At least three discrete alpha1 adrenoceptor subtypes have been identified: alpha1A, alpha1B, and alpha1D; their distribution differs between human organs and tissue. Approximately 70% of the alpha1 receptors in the human prostate are of the alpha1A subtype.

FLOMAX capsules are not intended for use as an antihypertensive drug.

Pharmacodynamics

Urologic pharmacodynamic effects have been evaluated in neurologically impaired pediatric patients and in adults with BPH [see Use in Specific Populations and Clinical Studies].

Pharmacokinetics

The pharmacokinetics of tamsulosin hydrochloride have been evaluated in adult healthy volunteers and patients with BPH after single and/or multiple administration with doses ranging from 0.1 mg to 1 mg.

Absorption

Absorption of tamsulosin hydrochloride from FLOMAX capsules 0.4 mg is essentially complete (>90%) following oral administration under fasting conditions. Tamsulosin hydrochloride exhibits linear kinetics following single and multiple dosing, with achievement of steady-state concentrations by the fifth day of oncea- day dosing.

Effect Of Food

The time to maximum concentration (Tmax) is reached by 4 to 5 hours under fasting conditions and by 6 to 7 hours when FLOMAX capsules are administered with food. Taking FLOMAX capsules under fasted conditions results in a 30% increase in bioavailability (AUC) and 40% to 70% increase in peak concentrations (Cmax) compared to fed conditions (Figure 1).

Figure 1 : Mean Plasma Tamsulosin Hydrochloride Concentrations Following Single-Dose Administration of FLOMAX Capsules 0.4 mg Under Fasted and Fed Conditions (n=8)

The effects of food on the pharmacokinetics of tamsulosin hydrochloride are consistent regardless of whether a FLOMAX capsule is taken with a light breakfast or a high-fat breakfast (Table 2).

Table 2 : Mean (± S.D.) Pharmacokinetic Parameters Following FLOMAX Capsules 0.4 mg Once Daily or 0.8 mg Once Daily with a Light Breakfast, High-Fat Breakfast or Fasted

Pharmacokinetic Parameter 0.4 mg QD to healthy volunteers; n=23 (age range 18-32 years) 0.8 mg QD to healthy volunteers; n=22 (age range 55-75 years)
Light Breakfast Fasted Light Breakfast High-Fat Breakfast Fasted
Cmin (ng/mL) 4.0 ± 2.6 3.8 ± 2.5 12.3 ± 6.7 13.5± 7.6 13.3 ±13.3
Cmax (ng/mL) 10.1 ± 4.8 17.1 ±17.1 29.8 ±10.3 29.1 ±11.0 41.6 ±15.6
Cmax/Cmin Ratio 3.1 ± 1.0 5.3 ±2.2 2.7± 0.7 2.5 ± 0.8 3.6 ±1.1
Tmax (hours) 6.0 4.0 7.0 6.6 5.0
T½ (hours) - - - - 14.9 ±3.9
AUCτ (ng•hr/mL) 151 ±81.5 199 ±94.1 440 ±195 449±217 557 ±257
Cmin = observed minimum concentration
Cmax = observed maximum tamsulosin hydrochloride plasma concentration
Tmax = median time-to-maximum concentration
T½ = observed half-life
AUCτ = area under the tamsulosin hydrochloride plasma time curve over the dosing interval

Distribution

The mean steady-state apparent volume of distribution of tamsulosin hydrochloride after intravenous administration to 10 healthy male adults was 16 L, which is suggestive of distribution into extracellular fluids in the body.

Tamsulosin hydrochloride is extensively bound to human plasma proteins (94% to 99%), primarily alpha1 acid glycoprotein (AAG), with linear binding over a wide concentration range (20 to 600 ng/mL). The results of two-way in vitro studies indicate that the binding of tamsulosin hydrochloride to human plasma proteins is not affected by amitriptyline, diclofenac, glyburide, simvastatin plus simvastatin-hydroxy acid metabolite, warfarin, diazepam, propranolol, trichlormethiazide, or chlormadinone. Likewise, tamsulosin hydrochloride had no effect on the extent of binding of these drugs.

Metabolism

There is no enantiomeric bioconversion from tamsulosin hydrochloride [R(-) isomer] to the S(+) isomer in humans. Tamsulosin hydrochloride is extensively metabolized by cytochrome P450 enzymes in the liver and less than 10% of the dose is excreted in urine unchanged. However, the pharmacokinetic profile of the metabolites in humans has not been established. Tamsulosin is extensively metabolized, mainly by CYP3A4 and CYP2D6 as well as via some minor participation of other CYP isoenzymes. Inhibition of hepatic drugmetabolizing enzymes may lead to increased exposure to tamsulosin [see WARNINGS AND PRECAUTIONS and DRUG INTERACTIONS]. The metabolites of tamsulosin hydrochloride undergo extensive conjugation to glucuronide or sulfate prior to renal excretion.

Incubations with human liver microsomes showed no evidence of clinically significant metabolic interactions between tamsulosin hydrochloride and amitriptyline, albuterol (beta agonist), glyburide (glibenclamide) and finasteride (5alpha-reductase inhibitor for treatment of BPH). However, results of the in vitro testing of the tamsulosin hydrochloride interaction with diclofenac and warfarin were equivocal.

Excretion

On administration of the radiolabeled dose of tamsulosin hydrochloride to 4 healthy volunteers, 97% of the administered radioactivity was recovered, with urine (76%) representing the primary route of excretion compared to feces (21%) over 168 hours.

Following intravenous or oral administration of an immediate-release formulation, the elimination half-life of tamsulosin hydrochloride in plasma ranged from 5 to 7 hours. Because of absorption rate-controlled pharmacokinetics with FLOMAX capsules, the apparent half-life of tamsulosin hydrochloride is approximately 9 to 13 hours in healthy volunteers and 14 to 15 hours in the target population.

Tamsulosin hydrochloride undergoes restrictive clearance in humans, with a relatively low systemic clearance (2.88 L/h).

Specific Populations

Pediatric Use

FLOMAX capsules are not indicated for use in pediatric populations [see Use In Specific Populations].

Geriatric (Age) Use

Cross-study comparison of FLOMAX capsules overall exposure (AUC) and half-life indicates that the pharmacokinetic disposition of tamsulosin hydrochloride may be slightly prolonged in geriatric males compared to young, healthy male volunteers. Intrinsic clearance is independent of tamsulosin hydrochloride binding to AAG, but diminishes with age, resulting in a 40% overall higher exposure (AUC) in subjects of age 55 to 75 years compared to subjects of age 20 to 32 years [see Use In Specific Populations].

Renal Impairment

The pharmacokinetics of tamsulosin hydrochloride have been compared in 6 subjects with mild-moderate (30 ≤ CLcr < 70 mL/min/1.73 m²) or moderate-severe (10 ≤ CLcr < 30 mL/min/1.73 m²) renal impairment and 6 normal subjects (CLcr >90 mL/min/1.73 m²). While a change in the overall plasma concentration of tamsulosin hydrochloride was observed as the result of altered binding to AAG, the unbound (active) concentration of tamsulosin hydrochloride, as well as the intrinsic clearance, remained relatively constant. Therefore, patients with renal impairment do not require an adjustment in FLOMAX capsules dosing. However, patients with endstage renal disease (CLcr < 10 mL/min/1.73 m²) have not been studied [see Use in Specific Populations].

Hepatic Impairment

The pharmacokinetics of tamsulosin hydrochloride have been compared in 8 subjects with moderate hepatic impairment (Child-Pugh's classification: Grades A and B) and 8 normal subjects. While a change in the overall plasma concentration of tamsulosin hydrochloride was observed as the result of altered binding to AAG, the unbound (active) concentration of tamsulosin hydrochloride does not change significantly, with only a modest (32%) change in intrinsic clearance of unbound tamsulosin hydrochloride. Therefore, patients with moderate hepatic impairment do not require an adjustment in FLOMAX capsules dosage. FLOMAX has not been studied in patients with severe hepatic impairment [see Use in Specific Populations].

Drug Interactions

Cytochrome P450 Inhibition

Strong and Moderate Inhibitors of CYP3A4 or CYP2D6

The effects of ketoconazole (a strong inhibitor of CYP3A4) at 400 mg once daily for 5 days on the pharmacokinetics of a single FLOMAX capsule 0.4 mg dose was investigated in 24 healthy volunteers (age range 23 to 47 years). Concomitant treatment with ketoconazole resulted in an increase in the Cmax and AUC of tamsulosin by a factor of 2.2 and 2.8, respectively [see WARNINGS AND PRECAUTIONS and CLINICAL PHARMACOLOGY]. The effects of concomitant administration of a moderate CYP3A4 inhibitor (e.g., erythromycin) on the pharmacokinetics of FLOMAX have not been evaluated [see WARNINGS AND PRECAUTIONS and DRUG INTERACTIONS].

The effects of paroxetine (a strong inhibitor of CYP2D6) at 20 mg once daily for 9 days on the pharmacokinetics of a single FLOMAX capsule 0.4 mg dose was investigated in 24 healthy volunteers (age range 23 to 47 years). Concomitant treatment with paroxetine resulted in an increase in the Cmax and AUC of tamsulosin by a factor of 1.3 and 1.6, respectively [see WARNINGS AND PRECAUTIONS and DRUG INTERACTIONS]. A similar increase in exposure is expected in CYP2D6 poor metabolizers (PM) as compared to extensive metabolizers (EM). A fraction of the population (about 7% of Caucasians and 2% of African Americans) are CYP2D6 PMs. Since CYP2D6 PMs cannot be readily identified and the potential for significant increase in tamsulosin exposure exists when FLOMAX 0.4 mg is co-administered with strong CYP3A4 inhibitors in CYP2D6 PMs, FLOMAX 0.4 mg capsules should not be used in combination with strong inhibitors of CYP3A4 (e.g., ketoconazole) [see WARNINGS AND PRECAUTIONS and DRUG INTERACTIONS].

The effects of concomitant administration of a moderate CYP2D6 inhibitor (e.g., terbinafine) on the pharmacokinetics of FLOMAX have not been evaluated [see WARNINGS AND PRECAUTIONS and DRUG INTERACTIONS].

The effects of co-administration of both a CYP3A4 and a CYP2D6 inhibitor with FLOMAX capsules have not been evaluated. However, there is a potential for significant increase in tamsulosin exposure when FLOMAX 0.4 mg is co-administered with a combination of both CYP3A4 and CYP2D6 inhibitors [see WARNINGS AND PRECAUTIONS and DRUG INTERACTIONS].

Cimetidine

The effects of cimetidine at the highest recommended dose (400 mg every 6 hours for 6 days) on the pharmacokinetics of a single FLOMAX capsule 0.4 mg dose was investigated in 10 healthy volunteers (age range 21 to 38 years). Treatment with cimetidine resulted in a significant decrease (26%) in the clearance of tamsulosin hydrochloride, which resulted in a moderate increase in tamsulosin hydrochloride AUC (44%) [see WARNINGS AND PRECAUTIONS and DRUG INTERACTIONS].

Other Alpha Adrenergic Blocking Agents

The pharmacokinetic and pharmacodynamic interactions between FLOMAX capsules and other alpha adrenergic blocking agents have not been determined; however, interactions between FLOMAX capsules and other alpha adrenergic blocking agents may be expected [see WARNINGS AND PRECAUTIONS and DRUG INTERACTIONS].

PDE5 Inhibitors

Caution is advised when alpha adrenergic blocking agents, including FLOMAX, are co-administered with PDE5 inhibitors. Alpha-adrenergic blockers and PDE5 inhibitors are both vasodilators that can lower blood pressure. Concomitant use of these two drug classes can potentially cause symptomatic hypotension [see WARNINGS AND PRECAUTIONS and DRUG INTERACTIONS].

Warfarin

A definitive drug-drug interaction study between tamsulosin hydrochloride and warfarin was not conducted. Results from limited in vitro and in vivo studies are inconclusive. Therefore, caution should be exercised with concomitant administration of warfarin and FLOMAX capsules [see WARNINGS AND PRECAUTIONS and DRUG INTERACTIONS].

Nifedipine, Atenolol, Enalapril

In three studies in hypertensive subjects (age range 47 to 79 years) whose blood pressure was controlled with stable doses of nifedipine, atenolol, or enalapril for at least 3 months, FLOMAX capsules 0.4 mg for 7 days followed by FLOMAX capsules 0.8 mg for another 7 days (n=8 per study) resulted in no clinically significant effects on blood pressure and pulse rate compared to placebo (n=4 per study). Therefore, dosage adjustments are not necessary when FLOMAX capsules are administered concomitantly with nifedipine, atenolol, or enalapril [see DRUG INTERACTIONS].

Digoxin And Theophylline

In two studies in healthy volunteers (n=10 per study; age range 19 to 39 years) receiving FLOMAX capsules 0.4 mg/day for 2 days, followed by FLOMAX capsules 0.8 mg/day for 5 to 8 days, single intravenous doses of digoxin 0.5 mg or theophylline 5 mg/kg resulted in no change in the pharmacokinetics of digoxin or theophylline. Therefore, dosage adjustments are not necessary when a FLOMAX capsule is administered concomitantly with digoxin or theophylline [see DRUG INTERACTIONS].

Furosemide

The pharmacokinetic and pharmacodynamic interaction between FLOMAX capsules 0.8 mg/day (steady-state) and furosemide 20 mg intravenously (single dose) was evaluated in 10 healthy volunteers (age range 21 to 40 years). FLOMAX capsules had no effect on the pharmacodynamics (excretion of electrolytes) of furosemide. While furosemide produced an 11% to 12% reduction in tamsulosin hydrochloride Cmax and AUC, these changes are expected to be clinically insignificant and do not require adjustment of the FLOMAX capsules dosage [see DRUG INTERACTIONS].

Clinical Studies

Four placebo-controlled clinical studies and one active-controlled clinical study enrolled a total of 2296 patients (1003 received FLOMAX capsules 0.4 mg once daily, 491 received FLOMAX capsules 0.8 mg once daily, and 802 were control patients) in the U.S. and Europe.

In the two U.S. placebo-controlled, double-blind, 13-week, multicenter studies [Study 1 (US92-03A) and Study 2 (US93-01)], 1486 men with the signs and symptoms of BPH were enrolled. In both studies, patients were randomized to either placebo, FLOMAX capsules 0.4 mg once daily, or FLOMAX capsules 0.8 mg once daily. Patients in FLOMAX capsules 0.8 mg once-daily treatment groups received a dose of 0.4 mg once daily for one week before increasing to the 0.8 mg once-daily dose. The primary efficacy assessments included: 1) total American Urological Association (AUA) Symptom Score questionnaire, which evaluated irritative (frequency, urgency, and nocturia), and obstructive (hesitancy, incomplete emptying, intermittency, and weak stream) symptoms, where a decrease in score is consistent with improvement in symptoms; and 2) peak urine flow rate, where an increased peak urine flow rate value over baseline is consistent with decreased urinary obstruction.

Mean changes from baseline to Week 13 in total AUA Symptom Score were significantly greater for groups treated with FLOMAX capsules 0.4 mg and 0.8 mg once daily compared to placebo in both U.S. studies (Table 3, Figures 2A and 2B). The changes from baseline to Week 13 in peak urine flow rate were also significantly greater for the FLOMAX capsules 0.4 mg and 0.8 mg once-daily groups compared to placebo in Study 1, and for the FLOMAX capsules 0.8 mg once-daily group in Study 2 (Table 3, Figures 3A and 3B). Overall there were no significant differences in improvement observed in total AUA Symptom Scores or peak urine flow rates between the 0.4 mg and the 0.8 mg dose groups with the exception that the 0.8 mg dose in Study 1 had a significantly greater improvement in total AUA Symptom Score compared to the 0.4 mg dose.

Table 3 : Mean (±S.D.) Changes from Baseline to Week 13 in Total AUA Symptom Score** and Peak Urine Flow Rate (mL/sec)

  Total AUA Symptom Score Peak Urine Flow Rate
Mean Baseline Value Mean Change Mean Baseline Value Mean Change
Study 1†
FLOMAX capsules 0.8 mg once daily 19.9 ±4.9 -9.6*±6.7 9.57 ±2.51 1.78* ±3.35
n=247 n=237 n=247 n=247
FLOMAX capsules 0.4 mg once daily 19.8 ± 5.0 -8.3* ±6.5 9.46 ±2.49 1.75* ±3.57
n=254 n=246 n=254 n=254
Placebo 19.6 ±4.9 -5.5 ±6.6 9.75±2.54 0.52 ±3.39
n=254 n=246 n=254 n=253
Study 2‡
FLOMAX capsules 0.8 mg once daily 18.2 ±5.6 -5.8* ±6.4 9.96 ±3.16 1.79*±3.36
n=244 n=238 n=244 n=237
FLOMAX capsules 0.4 mg once daily 17.9±5.8 -5.1* ±6.4 9.94±3.14 1.52 ± 3.64
n=248 n=244 n=248 n=244
Placebo 19.2±6.0 -3.6 ± 5.7 9.95 ±3.12 0.93 ± 3.28
n=239 n=235 n=239 n=235
* Statistically significant difference from placebo (p-value ≤ 0.050; Bonferroni-Holm multiple test procedure).
** Total AUA Symptom Scores ranged from 0 to 35.
† Peak urine flow rate measured 4 to 8 hours post dose at Week 13.
‡ Peak urine flow rate measured 24 to 27 hours post dose at Week 13.
Week 13: For patients not completing the 13-week study, the last observation was carried forward.

Mean total AUA Symptom Scores for both FLOMAX capsules 0.4 mg and 0.8 mg once-daily groups showed a rapid decrease starting at 1 week after dosing and remained decreased through 13 weeks in both studies (Figures 2A and 2B).

In Study 1, 400 patients (53% of the originally randomized group) elected to continue in their originally assigned treatment groups in a double-blind, placebo-controlled, 40-week extension trial (138 patients on 0.4 mg, 135 patients on 0.8 mg, and 127 patients on placebo). Three hundred twenty-three patients (43% of the originally randomized group) completed one year. Of these, 81% (97 patients) on 0.4 mg, 74% (75 patients) on 0.8 mg, and 56% (57 patients) on placebo had a response ≥25% above baseline in total AUA Symptom Score at one year.

Figure 2A : Mean Change from Baseline in Total AUA Symptom Score (0-35) Study 1

* indicates significant difference from placebo (p-value ≤ 0.050).
B = Baseline determined approximately one week prior to the initial dose of double-blind medication at Week 0. Subsequent values are observed cases.
LOCF = Last observation carried forward for patients not completing the 13-week study.
Note: Patients in the 0.8 mg treatment group received 0.4 mg for the first week.
Note: Total AUA Symptom Scores range from 0 to 35.

Figure 2B : Mean Change from Baseline in Total AUA Symptom Score (0-35) Study 2

* indicates significant difference from placebo (p-value ≤ 0.050).
Baseline measurement was taken Week 0. Subsequent values are observed cases.
LOCF = Last observation carried forward for patients not completing the 13-week study.
Note: Patients in the 0.8 mg treatment group received 0.4 mg for the first week.
Note: Total AUA Symptom Scores range from 0 to 35.

Figure 3A : Mean Increase in Peak Urine Flow Rate (mL/Sec) Study 1

* indicates significant difference from placebo (p-value ≤ 0.050).
B = Baseline determined approximately one week prior to the initial dose of double-blind medication at Week 0.
Subsequent values are observed cases.
LOCF = Last observation carried forward for patients not completing the 13-week study.
Note: The uroflowmetry assessments at Week 0 were recorded 4 to 8 hours after patients received the first dose of double-blind medication.
Measurements at each visit were scheduled 4 to 8 hours after dosing (approximate peak plasma tamsulosin concentration).
Note: Patients in the 0.8 mg treatment groups received 0.4 mg for the first week.

Figure 3B : Mean Increase in Peak Urine Flow Rate (mL/Sec) Study 2

* indicates significant difference from placebo (p-value ≤ 0.050).
Baseline measurement was taken Week 0. Subsequent values are observed cases.
LOCF = Last observation carried forward for patients not completing the 13-week study.
Note: Patients in the 0.8 mg treatment group received 0.4 mg for the first week.
Note: Week 1 and Week 2 measurements were scheduled 4 to 8 hours after dosing (approximate peak plasma tamsulosin concentration).
All other visits were scheduled 24 to 27 hours after dosing (approximate trough tamsulosin concentration).

What should i discuss with my healthcare provider before taking tamsulosin (flomax)?

You should not use this medication if you are allergic to tamsulosin. Do not take tamsulosin with other similar medicines such as alfuzosin (Uroxatral), doxazosin (Cardura), prazosin (Minipress), silodosin (Rapaflo), or terazosin (Hytrin).

If you have a history of prostate cancer, you may need a dose adjustment or special tests to safely take this tamsulosin.

Tamsulosin can affect your pupils during cataract surgery. Tell your eye surgeon ahead of time that you are using this medication. Do not stop using tamsulosin before surgery unless your surgeon tells you to.

Although this medication is not for use in women, tamsulosin is not expected to harm an unborn baby. If you are a woman using this medication, tell your doctor if you are pregnant or breast-feeding.

Tamsulosin is not for use in children.

What happens if i miss a dose (flomax)?

Take the missed dose as soon as you remember. Skip the missed dose if it is almost time for your next scheduled dose. Do not take extra medicine to make up the missed dose.

If you miss your doses for several days in a row, contact your doctor before restarting the medication. You may need a lower dose.

Side effects

Clinical Trials Experience

Because clinical studies are conducted under widely varying conditions, adverse reactions rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical studies of another drug and may not reflect the rates observed in practice.

The incidence of treatment-emergent adverse events has been ascertained from six short-term U.S. and European placebo-controlled clinical trials in which daily doses of 0.1 to 0.8 mg FLOMAX capsules were used. These studies evaluated safety in 1783 patients treated with FLOMAX capsules and 798 patients administered placebo. Table 1 summarizes the treatment-emergent adverse events that occurred in ≥2% of patients receiving either FLOMAX capsules 0.4 mg or 0.8 mg and at an incidence numerically higher than that in the placebo group during two 13-week U.S. trials (US92-03A and US93-01) conducted in 1487 men.

Table 1 : Treatment-Emergent1 Adverse Events Occurring in ≥2% of FLOMAX Capsules or Placebo Patients in Two U.S. Short-Term Placebo-Controlled Clinical Studies

BODY SYSTEM/ ADVERSE EVENT FLOMAX CAPSULES GROUPS PLACEBO
n=493
0.4 mg
n=502
0.8 mg
n=492
BODY AS WHOLE
Headache 97 (19.3%) 104 (21.1%) 99 (20.1%)
Infection2 45 (9.0%) 53 (10.8%) 37 (7.5%)
Asthenia 39 (7.8%) 42 (8.5%) 27 (5.5%)
Back pain 35 (7.0%) 41 (8.3%) 27 (5.5%)
Chest pain 20 (4.0%) 20 (4.1%) 18 (3.7%)
NERVOUS SYSTEM
Dizziness 75 (14.9%) 84 (17.1%) 50 (10.1%)
Somnolence 15 (3.0%) 21 (4.3%) 8 (1.6%)
Insomnia 12 (2.4%) 7 (1.4%) 3 (0.6%)
Libido decreased 5 (1.0%) 10 (2.0%) 6 (1.2%)
RESPIRATORY SYSTEM
Rhinitis3 66 (13.1%) 88 (17.9%) 41 (8.3%)
Pharyngitis 29 (5.8%) 25 (5.1%) 23 (4.7%)
Cough increased 17 (3.4%) 22 (4.5%) 12 (2.4%)
Sinusitis 11 (2.2%) 18 (3.7%) 8 (1.6%)
DIGESTIVE SYSTEM
Diarrhea 31 (6.2%) 21 (4.3%) 22 (4.5%)
Nausea 13 (2.6%) 19 (3.9%) 16 (3.2%)
Tooth disorder 6 (1.2%) 10 (2.0%) 7 (1.4%)
UROGENITAL SYSTEM
Abnormal ejaculation 42 (8.4%) 89 (18.1%) 1 (0.2%)
SPECIAL SENSES
Blurred vision 1 (0.2%) 10 (2.0%) 2 (0.4%)
1 A treatment-emergent adverse event was defined as any event satisfying one of the following criteria:
  • The adverse event occurred for the first time after initial dosing with double-blind study medication.
  • The adverse event was present prior to or at the time of initial dosing with double-blind study medication and subsequently increased in severity during double-blind treatment; or
  • The adverse event was present prior to or at the time of initial dosing with double-blind study medication, disappeared completely, and then reappeared during double-blind treatment.
2 Coding preferred terms also include cold, common cold, head cold, flu, and flu-like symptoms.
3 Coding preferred terms also include nasal congestion, stuffy nose, runny nose, sinus congestion, and hay fever.

Signs And Symptoms Of Orthostasis

In the two U.S. studies, symptomatic postural hypotension was reported by 0.2% of patients (1 of 502) in the 0.4 mg group, 0.4% of patients (2 of 492) in the 0.8 mg group, and by no patients in the placebo group. Syncope was reported by 0.2% of patients (1 of 502) in the 0.4 mg group, 0.4% of patients (2 of 492) in the 0.8 mg group, and 0.6% of patients (3 of 493) in the placebo group. Dizziness was reported by 15% of patients (75 of 502) in the 0.4 mg group, 17% of patients (84 of 492) in the 0.8 mg group, and 10% of patients (50 of 493) in the placebo group. Vertigo was reported by 0.6% of patients (3 of 502) in the 0.4 mg group, 1% of patients (5 of 492) in the 0.8 mg group, and by 0.6% of patients (3 of 493) in the placebo group.

Multiple testing for orthostatic hypotension was conducted in a number of studies. Such a test was considered positive if it met one or more of the following criteria: (1) a decrease in systolic blood pressure of ≥20 mmHg upon standing from the supine position during the orthostatic tests; (2) a decrease in diastolic blood pressure ≥10 mmHg upon standing, with the standing diastolic blood pressure < 65 mmHg during the orthostatic test; (3) an increase in pulse rate of ≥20 bpm upon standing with a standing pulse rate ≥100 bpm during the orthostatic test; and (4) the presence of clinical symptoms (faintness, lightheadedness/lightheaded, dizziness, spinning sensation, vertigo, or postural hypotension) upon standing during the orthostatic test.

Following the first dose of double-blind medication in Study 1, a positive orthostatic test result at 4 hours postdose was observed in 7% of patients (37 of 498) who received FLOMAX capsules 0.4 mg once daily and in 3% of the patients (8 of 253) who received placebo. At 8 hours post-dose, a positive orthostatic test result was observed for 6% of the patients (31 of 498) who received FLOMAX capsules 0.4 mg once daily and 4% (9 of 250) who received placebo (Note: patients in the 0.8 mg group received 0.4 mg once daily for the first week of Study 1).

In Studies 1 and 2, at least one positive orthostatic test result was observed during the course of these studies for 81 of the 502 patients (16%) in the FLOMAX capsules 0.4 mg once-daily group, 92 of the 491 patients (19%) in the FLOMAX capsules 0.8 mg once-daily group, and 54 of the 493 patients (11%) in the placebo group.

Because orthostasis was detected more frequently in FLOMAX capsule-treated patients than in placebo recipients, there is a potential risk of syncope [see WARNINGS AND PRECAUTIONS].

Abnormal Ejaculation

Abnormal ejaculation includes ejaculation failure, ejaculation disorder, retrograde ejaculation, and ejaculation decrease. As shown in Table 1, abnormal ejaculation was associated with FLOMAX capsules administration and was dose-related in the U.S. studies. Withdrawal from these clinical studies of FLOMAX capsules because of abnormal ejaculation was also dose-dependent, with 8 of 492 patients (1.6%) in the 0.8 mg group and no patients in the 0.4 mg or placebo groups discontinuing treatment due to abnormal ejaculation.

Laboratory Tests

No laboratory test interactions with FLOMAX capsules are known. Treatment with FLOMAX capsules for up to 12 months had no significant effect on prostate-specific antigen (PSA).

Postmarketing Experience

The following adverse reactions have been identified during post-approval use of FLOMAX capsules. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Decisions to include these reactions in labeling are typically based on one or more of the following factors: (1) seriousness of the reaction, (2) frequency of reporting, or (3) strength of causal connection to FLOMAX capsules.

Allergic-type reactions such as skin rash, urticaria, pruritus, angioedema, and respiratory symptoms have been reported with positive rechallenge in some cases. Priapism has been reported rarely. Infrequent reports of dyspnea, palpitations, hypotension, atrial fibrillation, arrhythmia, tachycardia, skin desquamation including reports of Stevens-Johnson syndrome, erythema multiforme, dermatitis exfoliative, constipation, vomiting, dry mouth, visual impairment, and epistaxis have been received during the postmarketing period.

During cataract and glaucoma surgery, a variant of small pupil syndrome known as Intraoperative Floppy Iris Syndrome (IFIS) has been reported in association with alpha1 blocker therapy [see WARNINGS AND PRECAUTIONS].

Read the entire FDA prescribing information for Flomax (Tamsulosin Hydrochloride)

Read More »

Tamsulosin Hydrochloride Dosage and Administration

Administration

Oral Administration

Administer orally once daily, 30 minutes after the same meal each day.1 8

Swallow capsules intact; do not open, crush, or chew capsules.1

Dosage

Available as tamsulosin hydrochloride; dosage expressed in terms of the salt.1

Adults

BPH Oral

Initially, 0.4 mg once daily.1 Allow 2–4 weeks to assess response at initial dosage.1 May increase dosage to 0.8 mg once daily, if necessary, to improve urinary flow rates and reduce symptoms.1

If administration is interrupted for several days at either dosage (i.e., 0.4 or 0.8 mg daily), reinitiate therapy at dosage of 0.4 mg once daily.1

Special Populations

Hepatic Impairment

Dosage adjustment not necessary in patients with moderate hepatic impairment.1

Renal Impairment

Dosage adjustment not necessary in patients with mild to severe renal impairment (Clcr 10–70 mL/minute per 1.73 m2).1

Not studied in patients with end-stage renal disease (Clcr <10 mL/minute per 1.73 m2).1

Advice to Patients

  • Importance of providing patient a copy of manufacturer’s patient information and advising patient to read and follow instructions for use.1

  • Risk of feeling faint or dizzy, particularly following initiation of therapy or dosage increase; avoid operating machinery or driving a motor vehicle for 12 hours following initial dose or dosage increase.1

  • Importance of sitting or lying down when symptoms of lowered BP occur and of rising carefully from a sitting or lying position.1

  • Importance of advising male patients being considered for cataract surgery that they should inform their ophthalmologist of current or prior α1-blocker therapy.1

  • Importance of men seeking medical treatment promptly if an erection is painful or persists for several hours.1

  • Importance of taking tamsulosin 30 minutes after the same meal each day.1 Importance of swallowing the capsules whole and of not chewing, crushing, or opening the capsules.1

  • Importance of informing clinicians of existing or contemplated concomitant therapy, including prescription and OTC drugs.1

  • Importance of informing patients of other important precautionary information.1 (See Cautions.)

(web3)