Sotalol Hcl

Name: Sotalol Hcl

Description

Sotalol hydrochloride tablets, USP are an antiarrhythmic drug with Class II (beta-adrenoreceptor blocking) and Class III (cardiac action potential duration prolongation) properties. It is supplied as a white to off-white, capsule-shaped, scored tablet for oral administration. Sotalol hydrochloride is a white, crystalline solid with a molecular weight of 308.8. It is hydrophilic, soluble in water, propylene glycol and ethanol, but is only slightly soluble in chloroform. Chemically, sotalol hydrochloride is d,l-N-[4-[1-hydroxy-2-[(1-methylethyl) amino]ethyl]phenyl]methane-sulfonamide monohydrochloride. The molecular formula is C12H20N203S•HCl and is represented by the following structural formula:

Each tablet, for oral administration, contains 80 mg, 120 mg, 160 mg or 240 mg of sotalol hydrochloride. In addition, each tablet also contains the following inactive ingredients: magnesium stearate and microcrystalline cellulose.

Overdose

Intentional or accidental overdosage with sotalol hydrochloride has rarely resulted in death.

Symptoms And Treatment Of Overdosage

The most common signs to be expected are bradycardia, congestive heart failure, hypotension, bronchospasm and hypoglycemia. In cases of massive intentional overdosage (2 to 16 grams) of sotalol hydrochloride the following clinical findings were seen: hypotension, bradycardia, cardiac asystole, prolongation of QT interval, Torsade de Pointes, ventricular tachycardia, and premature ventricular complexes. If overdosage occurs, therapy with sotalol should be discontinued and the patient observed closely. Because of the lack of protein binding, hemodialysis is useful for reducing sotalol plasma concentrations. Patients should be carefully observed until QT intervals are normalized and the heart rate returns to levels > 50 bpm. The occurrence of hypotension following an overdose may be associated with an initial slow drug elimination phase (half life of 30 hours) thought to be due to a temporary reduction of renal function caused by the hypotension. In addition, if required, the following therapeutic measures are suggested:

Bradycardia or Cardiac Asystole

Atropine, another anticholinergic drug, a beta-adrenergic agonist or transvenous cardiac pacing.

Heart Block

(second and third degree) transvenous cardiac pacemaker.

Hypotension

(depending on associated factors) epinephrine rather than isoproterenol or norepinephrine may be useful.

Bronchospasm

Aminophylline or aerosol beta-2-receptor stimulant.

Torsade de Pointes

DC cardioversion, transvenous cardiac pacing, epinephrine, magnesium sulfate.

Clinical pharmacology

Mechanism Of Action

Sotalol hydrochloride has both betaadrenoreceptor blocking (Vaughan Williams Class II) and cardiac action potential duration prolongation (Vaughan Williams Class III) antiarrhythmic properties. Sotalol hydrochloride is a racemic mixture of d- and l-sotalol. Both isomers have similar Class III antiarrhythmic effects, while the l-isomer is responsible for virtually all of the beta-blocking activity. The beta-blocking effect of sotalol is non-cardioselective, half maximal at about 80 mg/day and maximal at doses between 320 and 640 mg/day. Sotalol does not have partial agonist or membrane stabilizing activity. Although significant beta-blockade occurs at oral doses as low as 25 mg, significant Class III effects are seen only at daily doses of 160 mg and above.

In children, a Class III electrophysiologic effect can be seen at daily doses of 210 mg/m² body surface area (BSA). A reduction of the resting heart rate due to the beta-blocking effect of sotalol is observed at daily doses ≥ 90 mg/m² in children.

Electrophysiology

Sotalol hydrochloride prolongs the plateau phase of the cardiac action potential in the isolated myocyte, as well as in isolated tissue preparations of ventricular or atrial muscle (Class III activity). In intact animals it slows heart rate, decreases AV nodal conduction and increases the refractory periods of atrial and ventricular muscle and conduction tissue.

In man, the Class II (beta-blockade) electrophysiological effects of sotalol are manifested by increased sinus cycle length (slowed heart rate), decreased AV nodal conduction and increased AV nodal refractoriness. The Class III electrophysiological effects in man include prolongation of the atrial and ventricular monophasic action potentials, and effective refractory period prolongation of atrial muscle, ventricular muscle, and atrio-ventricular accessory pathways (where present) in both the anterograde and retrograde directions. With oral doses of 160 to 640 mg/day, the surface ECG shows dose-related mean increases of 40 to 100 msec in QT and 10 to 40 msec in QTc (see WARNINGS for description of relationship between QTc and Torsade de Pointes type arrhythmias). No significant alteration in QRS interval is observed.

In a small study (n=25) of patients with implanted defibrillators treated concurrently with sotalol, the average defibrillatory threshold was 6 joules (range 2 to 15 joules) compared to a mean of 16 joules for a nonrandomized comparative group primarily receiving amiodarone.

Twenty-five children in an unblinded, multicenter trial with supraventricular (SVT) and/or ventricular (VT) tachyarrhythmias, aged between 3 days and 12 years (mostly neonates and infants), received an ascending titration regimen with daily doses of 30, 90 and 210 mg/m² with dosing every 8 hours for a total 9 doses. During steady-state, the respective average increases above baseline of the QTc interval, in msec (%), were 2(+1%), 14(+4%) and 29(+7%) msec at the 3 dose levels. The respective mean maximum increases above baseline of the QTc interval, in msec (%), were 23(+6%), 36(+9%) and 55(+14%) msec at the 3 dose levels. The steadystate percent increases in the RR interval were 3, 9 and 12%. The smallest children (BSA < 0.33m²) showed a tendency for larger Class III effects (ΔQTc) and an increased frequency of prolongations of the QTc interval as compared with larger children (BSA ≥ 0.33m²). The beta-blocking effects also tended to be greater in the smaller children (BSA < 0.33m²). Both the Class III and beta-blocking effects of sotalol were linearly related with the plasma concentrations.

Hemodynamics

In a study of systemic hemodynamic function measured invasively in 12 patients with a mean LV ejection fraction of 37% and ventricular tachycardia (9 sustained and 3 non-sustained), a median dose of 160 mg twice daily of sotalol hydrochloride produced a 28% reduction in heart rate and a 24% decrease in cardiac index at 2 hours post dosing at steady-state. Concurrently, systemic vascular resistance and stroke volume showed nonsignificant increases of 25% and 8%, respectively. Pulmonary capillary wedge pressure increased significantly from 6.4 mmHg to 11.8 mmHg in the 11 patients who completed the study. One patient was discontinued because of worsening congestive heart failure. Mean arterial pressure, mean pulmonary artery pressure and stroke work index did not significantly change. Exercise and isoproterenol induced tachycardia are antagonized by sotalol, and total peripheral resistance increases by a small amount.

In hypertensive patients, sotalol hydrochloride produces significant reductions in both systolic and diastolic blood pressures. Although sotalol hydrochloride is usually well-tolerated hemodynamically, caution should be exercised in patients with marginal cardiac compensation as deterioration in cardiac performance may occur (see WARNINGS, Congestive Heart Failure).

Clinical Studies

Sotalol hydrochloride has been studied in life-threatening and less severe arrhythmias. In patients with frequent premature ventricular complexes (VPC), sotalol hydrochloride was significantly superior to placebo in reducing VPCs, paired VPCs and non-sustained ventricular tachycardia (NSVT); the response was dose-related through 640 mg/day with 80 to 85% of patients having at least a 75% reduction of VPCs. Sotalol hydrochloride was also superior, at the doses evaluated, to propranolol (40 to 80 mg TID) and similar to quinidine (200 to 400 mg QID) in reducing VPCs. In patients with lifethreatening arrhythmias [sustained ventricular tachycardia/fibrillation (VT/VF)], sotalol hydrochloride was studied acutely [by suppression of programmed electrical stimulation (PES) induced VT and by suppression of Holter monitor evidence of sustained VT] and, in acute responders, chronically.

In a double-blind, randomized comparison of sotalol and procainamide given intravenously (total of 2 mg/kg sotalol vs. 19 mg/kg of procainamide over 90 minutes), sotalol suppressed PES induction in 30% of patients vs. 20% for procainamide (p=0.2).

In a randomized clinical trial [Electrophysiologic Study Versus Electrocardiographic Monitoring (ESVEM) Trial] comparing choice of antiarrhythmic therapy by PES suppression vs. Holter monitor selection (in each case followed by treadmill exercise testing) in patients with a history of sustained VT/VF who were also inducible by PES, the effectiveness acutely and chronically of sotalol hydrochloride was compared with 6 other drugs (procainamide, quinidine, mexiletine, propafenone, imipramine and pirmenol). Overall response, limited to first randomized drug, was 39% for sotalol and 30% for the pooled other drugs. Acute response rate for first drug randomized using suppression of PES induction was 36% for sotalol vs. a mean of 13% for the other drugs. Using the Holter monitoring endpoint (complete suppression of sustained VT, 90% suppression of NSVT, 80% suppression of VPC pairs, and at least 70% suppression of VPCs), sotalol yielded 41% response vs. 45% for the other drugs combined. Among responders placed on long-term therapy identified acutely as effective (by either PES or Holter), sotalol, when compared to the pool of other drugs, had the lowest two-year mortality (13% vs. 22%), the lowest two-year VT recurrence rate (30% vs. 60%), and the lowest withdrawal rate (38% vs. about 75 to 80%). The most commonly used doses of sotalol hydrochloride in this trial were 320 to 480 mg/day (66% of patients), with 16% receiving 240 mg/day or less and 18% receiving 640 mg or more.

It cannot be determined, however, in the absence of a controlled comparison of sotalol vs. no pharmacologic treatment (e.g., in patients with implanted defibrillators) whether sotalol response causes improved survival or identifies a population with a good prognosis.

In a large double-blind, placebo controlled secondary prevention (postinfarction) trial (n=1,456), sotalol hydrochloride was given as a non-titrated initial dose of 320 mg once daily. Sotalol did not produce a significant increase in survival (7.3% mortality on sotalol vs. 8.9% on placebo, p=0.3), but overall did not suggest an adverse effect on survival. There was, however, a suggestion of an early (i.e., first 10 days) excess mortality (3% on sotalol vs. 2% on placebo). In a second small trial (n=17 randomized to sotalol) where sotalol was administered at high doses (e.g., 320 mg twice daily) to high-risk post-infarction patients (ejection fraction < 40% and either > 10 VPC/hr or VT on Holter), there were 4 fatalities and 3 serious hemodynamic/electrical adverse events within two weeks of initiating sotalol.

Pharmacokinetics

In healthy subjects, the oral bioavailability of sotalol hydrochloride is 90 to 100%. After oral administration, peak plasma concentrations are reached in 2.5 to 4 hours, and steady-state plasma concentrations are attained within 2 to 3 days (i.e., after 5 to 6 doses when administered twice daily). Over the dosage range 160 to 640 mg/day sotalol hydrochloride displays dose proportionality with respect to plasma concentrations. Distribution occurs to a central (plasma) and to a peripheral compartment, with a mean elimination half-life of 12 hours. Dosing every 12 hours results in trough plasma concentrations which are approximately one-half of those at peak.

Sotalol hydrochloride does not bind to plasma proteins and is not metabolized. Sotalol hydrochloride shows very little intersubject variability in plasma levels. The pharmacokinetics of the d and l enantiomers of sotalol are essentially identical. Sotalol hydrochloride crosses the blood brain barrier poorly. Excretion is predominantly via the kidney in the unchanged form, and therefore lower doses are necessary in conditions of renal impairment (see DOSAGE AND ADMINISTRATION). Age per se does not significantly alter the pharmacokinetics of sotalol hydrochloride, but impaired renal function in geriatric patients can increase the terminal elimination half-life, resulting in increased drug accumulation. The absorption of sotalol hydrochloride was reduced by approximately 20% compared to fasting when it was administered with a standard meal. Since sotalol hydrochloride is not subject to first-pass metabolism, patients with hepatic impairment show no alteration in clearance of sotalol.

The combined analysis of two unblinded, multicenter trials (a single dose and a multiple dose study) with 59 children, aged between 3 days and 12 years, showed the pharmacokinetics of sotalol to be first order. A daily dose of 30 mg/m² of sotalol was administered in the single dose study and daily doses of 30, 90 and 210 mg/m² were administered q 8h in the multi-dose study. After rapid absorption with peak levels occurring on average between 2 to 3 hours following administration, sotalol was eliminated with a mean half life of 9.5 hours. Steady-state was reached after 1 to 2 days. The average peak to trough concentration ratio was 2. BSA was the most important covariate and more relevant than age for the pharmacokinetics of sotalol.The smallest children (BSA < 0.33m²) exhibited a greater drug exposure (+59%) than the larger children who showed a uniform drug concentration profile. The intersubject variation for oral clearance was 22%.

Patient information

No information provided. Please refer to the WARNINGS and PRECAUTIONS sections.

What is the most important information i should know about sotalol af (betapace af, sotalol hydrochloride af)?

You should not use this medication if you are allergic to sotalol, or if you have asthma, certain serious heart conditions, a history of Long QT syndrome, severe kidney disease, or low levels of potassium in your blood.

Before taking sotalol AF, tell your doctor if you have breathing problems, a history of heart disease or congestive heart failure, an electrolyte imbalance, diabetes, kidney disease, a thyroid disorder, a history of allergies, or if you have recently had a heart attack.

Betapace AF is not used for the same conditions that Betapace and Sorine are used for. Always check your medicine when it is refilled to make sure you have received the correct brand and type as prescribed by your doctor.

Tell your doctor about all your prescription and over-the-counter medications, vitamins, minerals, herbal products, and drugs prescribed by other doctors. Do not start a new medication without telling your doctor.

Do not skip doses or stop taking sotalol AF without first talking to your doctor. Stopping suddenly may make your condition worse. You may need to use less and less before you stop the medication completely.

If you need surgery, tell the surgeon ahead of time that you are using sotalol AF. You may need to stop using the medicine for a short time.

What should i discuss with my healthcare provider before taking sotalol af (betapace af, sotalol hydrochloride af)?

You should not use this medication if you are allergic to sotalol, or if you have:

  • asthma;
  • a serious heart condition such as "sick sinus syndrome" or "AV block" (unless you have a pacemaker);
  • severe heart failure (that required you to be in the hospital);
  • a history of Long QT syndrome;
  • severe kidney disease;
  • low levels of potassium in your blood (hypokalemia); or
  • a history of slow heart beats that have caused you to faint.

To make sure sotalol AF is safe for you, tell your doctor about your other medical conditions, especially:

  • breathing problems such as bronchitis or emphysema;
  • a history of heart disease or congestive heart failure;
  • an electrolyte imbalance such as low levels of potassium or magnesium in your blood; or
  • diabetes;
  • kidney disease;
  • a thyroid disorder;
  • a history of allergies; or
  • if you have recently had a heart attack.

FDA pregnancy category B. Sotalol AF is not expected to harm an unborn baby. Tell your doctor if you are pregnant or plan to become pregnant during treatment.

Sotalol AF can pass into breast milk and may harm a nursing baby. Do not use this medication without telling your doctor if you are breast-feeding a baby.

(web3)