Rubidium Rb 82 generator
Name: Rubidium Rb 82 generator
Warnings
Included as part of the PRECAUTIONS section.
Clinical pharmacology
Mechanism of Action
Rb-82 is analogous to potassium ion (K+) in its biochemical behavior and is rapidly extracted by the myocardium proportional to the blood flow. Rb+ participates in the sodium-potassium (Na+/K+) ion exchange pumps that are present in cell membranes. The intracellular uptake of Rb-82 requires maintenance of ionic gradient across cell membranes. Rb-82 radioactivity is increased in viable myocardium reflecting intracellular retention, while the tracer is cleared rapidly from necrotic or infarcted tissue.
Pharmacodynamics
In human studies, myocardial activity was noted within the first minute after peripheral intravenous injection of Rb-82. When areas of infarction or ischemia are present in the myocardium, they are visualized within 2-7 minutes after injection as photon-deficient, or “cold”, areas on the myocardial scan. In patients with reduced cardiac function, transit of the injected dose from the peripheral infusion site to the myocardium may be delayed [see DOSAGE AND ADMINISTRATION].
Blood flow brings Rb-82 to all areas of the body during the first pass of circulation. Accordingly, visible uptake is also observed in other highly vascularized organs, such as the kidneys, liver, spleen and lungs.
Pharmacokinetics
With a physical half-life of 75 seconds, Rb-82 is very rapidly converted by radioactive decay into a trace amount of stable Kr-82 gas, which is passively expired by the lungs. Renal and hepatic excretion is not anticipated to play an essential role in Rb-82 elimination, although some of the Rb-82 dose may be excreted in the urine prior to radioactive decay.
Clinical Studies
In a descriptive, prospective, blinded image interpretation study6 of adult patients with known or suspected coronary artery disease, myocardial perfusion deficits in stress and rest PET images obtained with ammonia N 13 (n = 111) or rubidium Rb-82 chloride (n = 82) were compared to changes in stenosis flow reserve (SFR) as determined by coronary angiography. PET perfusion defects at rest and stress for seven cardiac regions (anterior, apical, anteroseptal, posteroseptal, anterolateral, posterolateral, and inferior walls) were graded on a scale of 0 (normal) to 5 (severe). Values for stenosis flow reserve, defined as flow at maximum coronary vasodilatation relative to rest flow, ranged from 0 (total occlusion) to 5 (normal). With increasing impairment of flow reserve, the subjective PET defect severity increased. A PET defect score of 2 or higher was positively correlated with flow reserve impairment (SFR < 3).
A systematic review of published literature was conducted using pre-defined inclusion/exclusion criteria which resulted in identification of 10 studies evaluating the use of Rb-82 PET myocardial perfusion imaging (MPI) for the identification of coronary artery disease as defined by catheter-based angiography. In these studies, the patient was the unit of analysis and 50% stenosis was the threshold for clinically significant coronary artery disease (CAD). Of these 10 studies, 9 studies were included in a meta-analysis for sensitivity (excluding one study with 100% sensitivity) and 7 studies were included in a meta-analysis of specificity (excluding 3 studies with 100% specificity). A random effects model yielded overall estimates of sensitivity and specificity of 92% (95% CI: 89% to 95%) and 81% (95% CI: 76% to 86%), respectively. The use of meta-analysis in establishing performance characteristics is limited, particularly by the possibility of publication bias (positive results being more likely to be published than negative results) which is difficult to detect especially when based on a limited number of small studies.
REFERENCES
6. Demer, L.L. et al. Assessment of coronary artery disease severity by PET: Comparison with quantitative arteriography in 193 patients. Circulation 1989; 79: 825-35.
Patient information
Women of Childbearing Potential
Patients should be advised to inform their physician or healthcare provider if they are pregnant or breast-feeding.
Post-study Breastfeeding Avoidance
Instruct nursing patients to substitute stored breast milk or infant formula for breast milk for one hour after administration of rubidium Rb 82 chloride injection.
Post-study Voiding
Instruct patients to void after completion of each image acquisition session and as often as possible for one hour after completion of the PET scan.