Levofloxacin Oral Solution
Name: Levofloxacin Oral Solution
- Levofloxacin Oral Solution side effects
- Levofloxacin Oral Solution drug
- Levofloxacin Oral Solution effects of levofloxacin oral solution
- Levofloxacin Oral Solution uses
- Levofloxacin Oral Solution adverse effects
- Levofloxacin Oral Solution 25 mg
- Levofloxacin Oral Solution 750 mg
- Levofloxacin Oral Solution dosage
- Levofloxacin Oral Solution injection
- Levofloxacin Oral Solution 100 mg
- Levofloxacin Oral Solution dosage forms
- Levofloxacin Oral Solution 500 mg
- Levofloxacin Oral Solution 500 mg tablet
- Levofloxacin Oral Solution oral dose
- Levofloxacin Oral Solution tablet
- Levofloxacin Oral Solution action
- Levofloxacin Oral Solution effects of
- Levofloxacin Oral Solution levofloxacin oral solution 25 mg
What are some side effects that I need to call my doctor about right away?
WARNING/CAUTION: Even though it may be rare, some people may have very bad and sometimes deadly side effects when taking a drug. Tell your doctor or get medical help right away if you have any of the following signs or symptoms that may be related to a very bad side effect:
- Signs of an allergic reaction, like rash; hives; itching; red, swollen, blistered, or peeling skin with or without fever; wheezing; tightness in the chest or throat; trouble breathing or talking; unusual hoarseness; or swelling of the mouth, face, lips, tongue, or throat.
- Signs of kidney problems like unable to pass urine, change in how much urine is passed, blood in the urine, or a big weight gain.
- Chest pain or pressure.
- Feeling very tired or weak.
- Shortness of breath.
- Any unexplained bruising or bleeding.
- Shakiness.
- Trouble walking.
- Vaginal itching or discharge.
- White patches in mouth.
- Fever or chills.
- Ringing in ears.
- Muscle pain or weakness.
- Very bad and sometimes deadly liver problems have happened with this medicine. Call your doctor right away if you have signs of liver problems like dark urine, feeling tired, not hungry, upset stomach or stomach pain, light-colored stools, throwing up, or yellow skin or eyes.
- A very bad skin reaction (Stevens-Johnson syndrome/toxic epidermal necrolysis) may happen. It can cause very bad health problems that may not go away, and sometimes death. Get medical help right away if you have signs like red, swollen, blistered, or peeling skin (with or without fever); red or irritated eyes; or sores in your mouth, throat, nose, or eyes.
- It is common to have diarrhea when taking levofloxacin oral solution. Rarely, a very bad form of diarrhea called Clostridium difficile (C diff)–associated diarrhea (CDAD) may occur. Sometimes, this has led to a deadly bowel problem (colitis). CDAD may happen while you are taking this medicine or within a few months after you stop taking it. Call your doctor right away if you have stomach pain or cramps, very loose or watery stools, or bloody stools. Do not try to treat loose stools without first checking with your doctor.
What are some other side effects of Levofloxacin Oral Solution?
All drugs may cause side effects. However, many people have no side effects or only have minor side effects. Call your doctor or get medical help if any of these side effects or any other side effects bother you or do not go away:
- Upset stomach.
- Loose stools (diarrhea).
- Hard stools (constipation).
- Headache.
These are not all of the side effects that may occur. If you have questions about side effects, call your doctor. Call your doctor for medical advice about side effects.
You may report side effects to the FDA at 1-800-FDA-1088. You may also report side effects at http://www.fda.gov/medwatch.
How do I store and/or throw out Levofloxacin Oral Solution?
- Store at room temperature.
- Store in a dry place. Do not store in a bathroom.
- Keep all drugs in a safe place. Keep all drugs out of the reach of children and pets.
- Check with your pharmacist about how to throw out unused drugs.
Consumer Information Use and Disclaimer
- If your symptoms or health problems do not get better or if they become worse, call your doctor.
- Do not share your drugs with others and do not take anyone else's drugs.
- Keep a list of all your drugs (prescription, natural products, vitamins, OTC) with you. Give this list to your doctor.
- Talk with the doctor before starting any new drug, including prescription or OTC, natural products, or vitamins.
- This medicine comes with an extra patient fact sheet called a Medication Guide. Read it with care. Read it again each time levofloxacin oral solution is refilled. If you have any questions about this medicine, please talk with the doctor, pharmacist, or other health care provider.
- If you think there has been an overdose, call your poison control center or get medical care right away. Be ready to tell or show what was taken, how much, and when it happened.
This information should not be used to decide whether or not to take levofloxacin oral solution or any other medicine. Only the healthcare provider has the knowledge and training to decide which medicines are right for a specific patient. This information does not endorse any medicine as safe, effective, or approved for treating any patient or health condition. This is only a brief summary of general information about this medicine. It does NOT include all information about the possible uses, directions, warnings, precautions, interactions, adverse effects, or risks that may apply to levofloxacin oral solution. This information is not specific medical advice and does not replace information you receive from the healthcare provider. You must talk with the healthcare provider for complete information about the risks and benefits of using this medicine.
Review Date: October 4, 2017
Dosage Forms and Strengths
ORAL SOLUTION, 25 mg/mL, clear yellow to clear greenish-yellow color
Adverse Reactions
To report SUSPECTED ADVERSE REACTIONS, contact Hi-Tech Pharmacal Co., Inc. at 1-800-262-9010 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.
Serious and Otherwise Important Adverse Reactions
The following serious and otherwise important adverse drug reactions are discussed in greater detail in other sections of labeling:
- Tendon Effects [see Warnings and Precaution (5.1)]
- Exacerbation of Myasthenia Gravis [see Warnings and Precautions (5.2)]
- Hypersensitivity Reactions [see Warnings and Precautions (5.3)]
- Other Serious and Sometimes Fatal Reactions [see Warnings and Precautions (5.4)]
- Hepatotoxicity [see Warnings and Precautions (5.5)]
- Central Nervous System Effects [see Warnings and Precautions (5.6)]
- Clostridium difficile-Associated Diarrhea [see Warnings and Precautions (5.7)]
- Peripheral Neuropathy [see Warnings and Precautions (5.8)]
- Prolongation of the QT Interval [see Warnings and Precautions (5.9)]
- Musculoskeletal Disorders in Pediatric Patients [see Warnings and Precautions (5.10)]
- Blood Glucose Disturbances [see Warnings and Precautions (5.11)]
- Photosensitivity/Phototoxicity [see Warnings and Precautions (5.12)]
- Development of Drug Resistant Bacteria [see Warnings and Precautions (5.13)]
Crystalluria and cylindruria have been reported with quinolones, including Levofloxacin. Therefore, adequate hydration of patients receiving Levofloxacin should be maintained to prevent the formation of a highly concentrated urine [see Dosage and Administration (2.5)].
Clinical Trial Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
The data described below reflect exposure to Levofloxacin in 7537 patients in 29 pooled Phase 3 clinical trials. The population studied had a mean age of 50 years (approximately 74% of the population was < 65 years of age), 50% were male, 71% were Caucasian, 19% were Black. Patients were treated with Levofloxacin for a wide variety of infectious diseases [see Indications and Usage (1)] . Patients received Levofloxacin doses of 750 mg once daily, 250 mg once daily, or 500 mg once or twice daily. Treatment duration was usually 3–14 days, and the mean number of days on therapy was 10 days.
The overall incidence, type and distribution of adverse reactions was similar in patients receiving Levofloxacin doses of 750 mg once daily, 250 mg once daily, and 500 mg once or twice daily. Discontinuation of Levofloxacin due to adverse drug reactions occurred in 4.3% of patients overall, 3.8% of patients treated with the 250 mg and 500 mg doses and 5.4% of patients treated with the 750 mg dose. The most common adverse drug reactions leading to discontinuation with the 250 and 500 mg doses were gastrointestinal (1.4%), primarily nausea (0.6%); vomiting (0.4%); dizziness (0.3%); and headache (0.2%). The most common adverse drug reactions leading to discontinuation with the 750 mg dose were gastrointestinal (1.2%), primarily nausea (0.6%), vomiting (0.5%); dizziness (0.3%); and headache (0.3%).
Adverse reactions occurring in ≥1% of Levofloxacin-treated patients and less common adverse reactions, occurring in 0.1 to <1% of Levofloxacin-treated patients, are shown in Table 4 and Table 5, respectively. The most common adverse drug reactions (≥3%) are nausea, headache, diarrhea, insomnia, constipation, and dizziness.
* N = 7274 † N = 3758 (women) | ||
Table 4: Common (≥1%) Adverse Reactions Reported in Clinical Trials with Levofloxacin | ||
System/Organ Class | Adverse Reaction | % (N=7537) |
Infections and Infestations | moniliasis | 1 |
Psychiatric Disorders | insomnia* [see Warnings and Precautions (5.6)]. | 4 |
Nervous System Disorders | headache | 6 |
dizziness [see Warnings and Precautions (5.6)]. | 3 | |
Respiratory, Thoracic and Mediastinal Disorders | dyspnea [see Warnings and Precautions (5.3)] | 1 |
Gastrointestinal Disorders | nausea | 7 |
diarrhea | 5 | |
constipation | 3 | |
abdominal pain | 2 | |
vomiting | 2 | |
dyspepsia | 2 | |
Skin and Subcutaneous Tissue Disorders | rash [see Warnings and Precautions (5.3)] | 2 |
pruritis | 1 | |
Reproductive System and Breast Disorders | vaginitis | 1† |
General Disorders and Administration Site Conditions | edema | 1 |
injection site reaction | 1 | |
chest pain | 1 |
* N = 7274 | |
Table 5: Less Common (0.1 to 1%) Adverse Reactions Reported in Clinical Trials with Levofloxacin (N=7537) | |
System/Organ Class | Adverse Reaction |
Infections and Infestations | genital moniliasis |
Blood and Lymphatic System Disorders | anemia |
thrombocytopenia | |
granulocytopenia | |
[see Warnings and Precautions (5.4)] | |
Immune System Disorders | allergic reaction [see Warnings and Precautions (5.3, 5.4)] |
Metabolism and Nutrition Disorders | hyperglycemia |
hypoglycemia | |
[see Warnings and Precautions (5.11)] | |
hyperkalemia | |
Psychiatric Disorders | anxiety |
agitation | |
confusion | |
depression | |
hallucination | |
nightmare* | |
[see Warnings and Precautions (5.6)] | |
sleep disorder | |
anorexia | |
abnormal dreaming* | |
Nervous System Disorders | tremor |
convulsions | |
[see Warnings and Precautions (5.6)] | |
paresthesia [see Warnings and Precautions (5.8)] | |
vertigo | |
hypertonia | |
hyperkinesias | |
abnormal gait | |
somnolence* | |
syncope | |
Respiratory, Thoracic and Mediastinal Disorders | epistaxis |
Cardia Disorders | cardiac arrest |
palpitation | |
ventricular tachycardia | |
ventricular arrhythmia | |
Vascular Disorders | phlebitis |
Gastrointestinal Disorders | gastritis |
stomatitis | |
pancreatitis | |
esophagitis | |
gastroenterits | |
glossitis | |
pseudomembraneous/ C. difficile colitis [see Warnings and Precautions (5.7)] | |
Hepatobiliary Disorders | abnormal hepatic function |
increased hepatic enzymes | |
increased alkaline phosphatase | |
Skin and Subcutaneous Tissue Disorders | urticaria [see Warnings and Precautions (5.3)] |
Musculoskeletal and Connective Tissue Disorders | arthralgia |
tendinitis | |
[see Warnings and Precautions (5.1)] | |
myalgia | |
skeletal pain | |
Renal and Urinary Disorders | abnormal renal function |
acute renal failure [see Warnings and Precautions (5.4)] |
In clinical trials using multiple-dose therapy, ophthalmologic abnormalities, including cataracts and multiple punctate lenticular opacities, have been noted in patients undergoing treatment with quinolones, including Levofloxacin. The relationship of the drugs to these events is not presently established.
Postmarketing Experience
Table 6 lists adverse reactions that have been identified during post-approval use of Levofloxacin. Because these reactions are reported voluntarily from a population of uncertain size, reliably estimating their frequency or establishing a causal relationship to drug exposure is not always possible.
Table 6: Postmarketing Reports of Adverse Drug Reactions | |
System/Organ Class | Adverse Reaction |
Blood and Lymphatic System Disorders | pancytopenia |
aplastic anemia | |
leukopenia | |
hemolytic anemia | |
[see Warnings and Precautions (5.4)] | |
eosinophilia | |
Immune System Disorders | hypersensitivity reactions, sometimes fatal including: |
-anaphylactic/anaphylactoid reactions | |
-anaphylactic shock | |
-angioneurotic edema | |
-serum sickness | |
[see Warnings and Precautions (5.3), Warnings and Precautions (5.4)] | |
Psychiatric Disorders | psychosis |
paranoia | |
isolated reports of suicide attempt and suicidal ideation | |
[see Warnings and Precautions (5.6)] | |
Nervous System Disorders | exacerbation of myasthenia gravis [see Warnings and Precautions (5.2)] anosmia |
ageusia | |
parosmia | |
dysgeusia | |
peripheral neuropathy [see Warnings and Precautions (5.8)] | |
isolated reports of encephalopathy | |
abnormal electroencephalogram (EEG) | |
dysphonia pseudotumor cerebri [see Warnings and Precautions (5.6)] | |
Eye Disorders | vision disturbance, including diplopia |
visual acuity reduced | |
vision blurred | |
scotoma | |
Ear and Labyrinth Disorders | hypoacusis |
tinnitus | |
Cardiac Disorders | isolated reports of torsade de pointes |
electrocardiogram QT prolonged | |
[see Warnings and Precautions (5.9)] | |
tachycardia | |
Vascular Disorders | vasodilatation |
Respiratory, Thoracic and Mediastinal Disorders | isolated reports of allergic pneumonitis [see Warnings and Precautions (5.4)] |
Hepatobiliary Disorders | hepatic failure (including fatal cases) |
hepatitis | |
jaundice | |
[see Warnings and Precautions (5.4), Warnings and Precautions (5.5)] | |
Skin and Subcutaneous Tissue Disorders | bullous eruptions to include: |
-Stevens-Johnson Syndrome | |
-toxic epidermal necrolysis | |
-erythema multiforme | |
[see Warnings and Precautions (5.4)] | |
photosensitivity/photoxicity reaction [see Warnings and Precautions (5.12)] | |
leukocytoclastic vasculitis | |
Musculoskeletal and Connective Tissue Disorders | tendon rupture [see Warnings and Precautions (5.1)] |
muscle injury, including rupture | |
rhabdomyolysis | |
Renal and Urinary Disorders | interstitial nephritis [see Warnings and Precautions (5.4)] |
General Disorders and Administration Site Conditions | multi-organ failure |
pyrexia | |
Investigations | prothrombin time prolonged |
international normalized ratio prolonged | |
muscle enzymes increased |
Levofloxacin Oral Solution Description
Levofloxacin is a synthetic broad-spectrum antibacterial agent for oral and intravenous administration. Chemically, levofloxacin, a chiral fluorinated carboxyquinolone, is the pure (-)-(S)-enantiomer of the racemic drug substance ofloxacin. The chemical name is (-)-(S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid hemihydrate.
Figure 1: The Chemical Structure of Levofloxacin
The empirical formula is C18H20FN3O4 •½ H2O and the molecular weight is 370.38. Levofloxacin is a light yellowish-white to yellow-white crystal or crystalline powder. The molecule exists as a zwitterion at the pH conditions in the small intestine.
The data demonstrate that from pH 0.6 to 5.8, the solubility of levofloxacin is essentially constant (approximately 100 mg/mL). Levofloxacin is considered soluble to freely soluble in this pH range, as defined by USP nomenclature. Above pH 5.8, the solubility increases rapidly to its maximum at pH 6.7 (272 mg/mL) and is considered freely soluble in this range. Above pH 6.7, the solubility decreases and reaches a minimum value (about 50 mg/mL) at a pH of approximately 6.9.
Levofloxacin has the potential to form stable coordination compounds with many metal ions. This in vitro chelation potential has the following formation order: Al+3>Cu+2>Zn+2>Mg+2>Ca+2.
Excipients and Description of Dosage Forms
Levofloxacin Oral Solution
Levofloxacin Oral Solution, 25 mg/mL, is a multi-use self-preserving aqueous solution of levofloxacin with pH ranging from 5.0 to 6.0. The appearance of Levofloxacin Oral Solution may range from clear yellow to clear greenish-yellow. This does not adversely affect product potency.
Levofloxacin Oral Solution contains the following inactive ingredients: artificial bubble gum flavor, artificial grape flavor, ascorbic acid, benzyl alcohol, glycerin, hydrochloric acid, PFC Bitter Mask F-9885, propylene glycol, purified water, saccharin sodium, and sucrose. Sodium hydroxide may be used to adjust pH.
Levofloxacin Oral Solution - Clinical Pharmacology
Mechanism of Action
Levofloxacin is a member of the fluoroquinolone class of antibacterial agents [see Microbiology (12.4)].
Pharmacokinetics
The mean ± SD pharmacokinetic parameters of levofloxacin determined under single and steady-state conditions following oral tablet, oral solution, or intravenous (IV) doses of Levofloxacin are summarized in Table 8.
* clearance/bioavailability † volume of distribution/bioavailability ‡ healthy males 18–53 years of age § Absolute bioavailability; F=0.99 ± 0.08 from a 500 mg tablet and F=0.99 ± 0.06 from a 750 mg tablet; ¶ healthy males and females 19–55 years of age # healthy male and female subjects 18–54 years of age Þ 60 min infusion for 250 mg and 500 mg doses, 90 min infusion for 750 mg dose ß 500 mg every 48h for patients with moderate renal impairment (CLCR 20–50 mL/min) and infections of the respiratory tract or skin à dose-normalized values (to 500 mg dose), estimated by population pharmacokinetic modeling è healthy males 22–75 years of age ð healthy females 18–80 years of age ø young healthy male and female subjects 18–36 years of age ý healthy elderly male and female subjects 66–80 years of age | |||||||
Table 8: Mean ± SD Levofloxacin PK Parameters | |||||||
Regimen | Cmax (mcg/mL) | Tmax (h) | AUC (mcg∙h/mL) | CL/F* (mL/min) | Vd/F† (L) | t1/2(h) | CLR (mL/min) |
Single dose | |||||||
250 mg oral tablet‡ | 2.8 ± 0.4 | 1.6 ± 1.0 | 27.2 ± 3.9 | 156 ± 20 | ND | 7.3 ± 0.9 | 142 ± 21 |
500 mg oral tablet,§ | 5.1 ± 0.8 | 1.3 ± 0.6 | 47.9 ± 6.8 | 178 ± 28 | ND | 6.3 ± 0.6 | 103 ± 30 |
500 mg oral solution¶ | 5.8 ± 1.8 | 0.8 ± 0.7 | 47.8 ± 10.8 | 183 ± 40 | 112 ± 37.2 | 7.0 ± 1.4 | ND |
500 mg IV | 6.2 ± 1.0 | 1.0 ± 0.1 | 48.3 ± 5.4 | 175 ± 20 | 90 ± 11 | 6.4 ± 0.7 | 112 ± 25 |
750 mg oral tablet#,§ | 9.3 ± 1.6 | 1.6 ± 0.8 | 101 ± 20 | 129 ± 24 | 83 ± 17 | 7.5 ± 0.9 | ND |
750 mg IV | 11.5 ±4.0Þ | ND | 110 ±40 | 126 ±39 | 75 ± 13 | 7.5 ± 1.6 | ND |
Multiple dose | |||||||
500 mg every 24h oral tablet‡ | 5.7 ± 1.4 | 1.1 ± 0.4 | 47.5 ± 6.7 | 175 ± 25 | 102 ± 22 | 7.6 ± 1.6 | 116 ± 31 |
500 mg every 24h IV | 6.4 ± 0.8 | ND | 54.6 ± 11.1 | 158 ± 29 | 91 ± 12 | 7.0 ± 0.8 | 99 ± 28 |
500 mg or 250 mg ever 24h IV, patients with bacterial infectionß | 8.7± 4.0à | ND | 72.5 ± 51.2 | 154 ± 72 | 111 ± 58 | ND | ND |
750 mg every 24h oral tablet | 8.6 ± 1.9 | 1.4 ± 0.5 | 90.7 ± 17.6 | 143 ± 29 | 100 ± 16 | 8.8 ± 1.5 | 116 ± 28 |
750 mg every 24h IV | ND | 108 ± 34 | 126 ± 37 | 80 ± 27 | 7.9 ± 1.9 | ND | |
500 mg oral tablet single dose, effects of gender and age: | |||||||
Maleè | 5.5 ± 1.1 | 1.2 ± 0.4 | 54.4 ± 18.9 | 166 ± 44 | 89 ± 13 | 7.5 ± 2.1 | 126 ± 38 |
Femaleð | 7.0 ± 1.6 | 1.7 ± 0.5 | 67.7 ± 24.2 | 136 ± 44 | 62 ± 16 | 6.1 ± 0.8 | 106 ± 40 |
Youngø | 5.5 ± 1.0 | 1.5 ± 0.6 | 47.5 ± 9.8 | 182 ± 35 | 83 ± 18 | 6.0 ± 0.9 | 140 ± 33 |
Elderlyý | 7.0 ± 1.6 | 1.4 ± 0.5 | 74.7 ± 23.3 | 121 ± 33 | 67 ± 19 | 7.6 ± 2.0 | 91 ± 29 |
500 mg oral single dose tablet, patients with renal insufficiency: | |||||||
CLCR 50–80 mL/min | 7.5 ± 1.8 | 1.5 ± 0.5 | 95.6 ± 11.8 | 88 ± 10 | ND | 9.1 ± 0.9 | 57 ± 8 |
CLCR 20–49 mL/min | 7.1 ± 3.1 | 2.1 ± 1.3 | 182.1 ± 62.6 | 51 ± 19 | ND | 27 ± 10 | 26 ± 13 |
CLCR <20 mL/min | 8.2 ± 2.6 | 1.1 ± 1.0 | 263.5 ± 72.5 | 33 ± 8 | ND | 35 ± 5 | 13 ± 3 |
Hemodialysis | 5.7 ± 1.0 | 2.8 ± 2.2 | ND | ND | ND | 76 ± 42 | ND |
CAPD | 6.9 ± 2.3 | 1.4 ± 1.1 | ND | ND | ND | 51 ± 24 | ND |
ND = not determined
Absorption
Levofloxacin is rapidly and essentially completely absorbed after oral administration. Peak plasma concentrations are usually attained one to two hours after oral dosing. The absolute bioavailability of levofloxacin from a 500 mg tablet and a 750 mg tablet of Levofloxacin are both approximately 99%, demonstrating complete oral absorption of levofloxacin. Following a single intravenous dose of Levofloxacin to healthy volunteers, the mean ± SD peak plasma concentration attained was 6.2 ± 1.0 mcg/mL after a 500 mg dose infused over 60 minutes and 11.5 ± 4.0 mcg/mL after a 750 mg dose infused over 90 minutes. Levofloxacin Oral Solution and Tablet formulations are bioequivalent.
Levofloxacin pharmacokinetics are linear and predictable after single and multiple oral or IV dosing regimens. Steady-state conditions are reached within 48 hours following a 500 mg or 750 mg once-daily dosage regimen. The mean ± SD peak and trough plasma concentrations attained following multiple once-daily oral dosage regimens were approximately 5.7 ± 1.4 and 0.5 ± 0.2 mcg/mL after the 500 mg doses, and 8.6 ± 1.9 and 1.1 ± 0.4 mcg/mL after the 750 mg doses, respectively. The mean ± SD peak and trough plasma concentrations attained following multiple once-daily IV regimens were approximately 6.4 ± 0.8 and 0.6 ± 0.2 mcg/mL after the 500 mg doses, and 12.1 ± 4.1 and 1.3 ± 0.71 mcg/mL after the 750 mg doses, respectively. Oral administration of a 500 mg dose of Levofloxacin with food prolongs the time to peak concentration by approximately 1 hour and decreases the peak concentration by approximately 14% following tablet and approximately 25% following oral solution administration. Therefore, Levofloxacin Tablets can be administered without regard to food. It is recommended that Levofloxacin Oral Solution be taken 1 hour before or 2 hours after eating.
The plasma concentration profile of levofloxacin after IV administration is similar and comparable in extent of exposure (AUC) to that observed for Levofloxacin Tablets when equal doses (mg/mg) are administered. Therefore, the oral and IV routes of administration can be considered interchangeable (see Figure 2 and Figure 3).
Figure 2: Mean Levofloxacin Plasma Concentration vs. Time Profile: 750 mg
Figure 3: Mean Levofloxacin Plasma Concentration vs. Time Profile: 500 mg
Distribution
The mean volume of distribution of levofloxacin generally ranges from 74 to 112 L after single and multiple 500 mg or 750 mg doses, indicating widespread distribution into body tissues. Levofloxacin reaches its peak levels in skin tissues and in blister fluid of healthy subjects at approximately 3 hours after dosing. The skin tissue biopsy to plasma AUC ratio is approximately 2 and the blister fluid to plasma AUC ratio is approximately 1 following multiple once-daily oral administration of 750 mg and 500 mg doses of Levofloxacin respectively, to healthy subjects. Levofloxacin also penetrates well into lung tissues. Lung tissue concentrations were generally 2- to 5-fold higher than plasma concentrations and ranged from approximately 2.4 to 11.3 mcg/g over a 24-hour period after a single 500 mg oral dose.
In vitro, over a clinically relevant range (1 to 10 mcg/mL) of serum/plasma levofloxacin concentrations, levofloxacin is approximately 24 to 38% bound to serum proteins across all species studied, as determined by the equilibrium dialysis method. Levofloxacin is mainly bound to serum albumin in humans. Levofloxacin binding to serum proteins is independent of the drug concentration.
Metabolism
Levofloxacin is stereochemically stable in plasma and urine and does not invert metabolically to its enantiomer, D-ofloxacin. Levofloxacin undergoes limited metabolism in humans and is primarily excreted as unchanged drug in the urine. Following oral administration, approximately 87% of an administered dose was recovered as unchanged drug in urine within 48 hours, whereas less than 4% of the dose was recovered in feces in 72 hours. Less than 5% of an administered dose was recovered in the urine as the desmethyl and N-oxide metabolites, the only metabolites identified in humans. These metabolites have little relevant pharmacological activity.
Excretion
Levofloxacin is excreted largely as unchanged drug in the urine. The mean terminal plasma elimination half-life of levofloxacin ranges from approximately 6 to 8 hours following single or multiple doses of levofloxacin given orally or intravenously. The mean apparent total body clearance and renal clearance range from approximately 144 to 226 mL/min and 96 to 142 mL/min, respectively. Renal clearance in excess of the glomerular filtration rate suggests that tubular secretion of levofloxacin occurs in addition to its glomerular filtration. Concomitant administration of either cimetidine or probenecid results in approximately 24% and 35% reduction in the levofloxacin renal clearance, respectively, indicating that secretion of levofloxacin occurs in the renal proximal tubule. No levofloxacin crystals were found in any of the urine samples freshly collected from subjects receiving Levofloxacin.
Geriatric
There are no significant differences in levofloxacin pharmacokinetics between young and elderly subjects when the subjects' differences in creatinine clearance are taken into consideration. Following a 500 mg oral dose of Levofloxacin to healthy elderly subjects (66 – 80 years of age), the mean terminal plasma elimination half-life of levofloxacin was about 7.6 hours, as compared to approximately 6 hours in younger adults. The difference was attributable to the variation in renal function status of the subjects and was not believed to be clinically significant. Drug absorption appears to be unaffected by age. Levofloxacin dose adjustment based on age alone is not necessary [see Use in Specific Populations (8.5)].
Pediatrics
The pharmacokinetics of levofloxacin following a single 7 mg/kg intravenous dose were investigated in pediatric patients ranging in age from 6 months to 16 years. Pediatric patients cleared levofloxacin faster than adult patients, resulting in lower plasma exposures than adults for a given mg/kg dose. Subsequent pharmacokinetic analyses predicted that a dosage regimen of 8 mg/kg every 12 hours (not to exceed 250 mg per dose) for pediatric patients 6 months to 17 years of age would achieve comparable steady state plasma exposures (AUC0-24 and Cmax) to those observed in adult patients administered 500 mg of levofloxacin once every 24 hours.
Gender
There are no significant differences in levofloxacin pharmacokinetics between male and female subjects when subjects' differences in creatinine clearance are taken into consideration. Following a 500 mg oral dose of Levofloxacin to healthy male subjects, the mean terminal plasma elimination half-life of levofloxacin was about 7.5 hours, as compared to approximately 6.1 hours in female subjects. This difference was attributable to the variation in renal function status of the male and female subjects and was not believed to be clinically significant. Drug absorption appears to be unaffected by the gender of the subjects. Dose adjustment based on gender alone is not necessary.
Race
The effect of race on levofloxacin pharmacokinetics was examined through a covariate analysis performed on data from 72 subjects: 48 white and 24 non-white. The apparent total body clearance and apparent volume of distribution were not affected by the race of the subjects.
Renal Impairment
Clearance of levofloxacin is substantially reduced and plasma elimination half-life is substantially prolonged in adult patients with impaired renal function (creatinine clearance < 50 mL/min), requiring dosage adjustment in such patients to avoid accumulation. Neither hemodialysis nor continuous ambulatory peritoneal dialysis (CAPD) is effective in removal of levofloxacin from the body, indicating that supplemental doses of Levofloxacin are not required following hemodialysis or CAPD [see Dosage and Administration (2.3), Use in Specific Populations (8.6)].
Hepatic Impairment
Pharmacokinetic studies in hepatically impaired patients have not been conducted. Due to the limited extent of levofloxacin metabolism, the pharmacokinetics of levofloxacin are not expected to be affected by hepatic impairment [see Use in Specific Populations (8.7)].
Bacterial Infection
The pharmacokinetics of levofloxacin in patients with serious community-acquired bacterial infections are comparable to those observed in healthy subjects.
Drug-Drug Interactions
The potential for pharmacokinetic drug interactions between Levofloxacin and antacids warfarin, theophylline, cyclosporine, digoxin, probenecid, and cimetidine has been evaluated [see Drug Interactions (7)].
Microbiology
Mechanism of Action
Levofloxacin is the L-isomer of the racemate, ofloxacin, a quinolone antimicrobial agent. The antibacterial activity of ofloxacin resides primarily in the L-isomer. The mechanism of action of levofloxacin and other fluoroquinolone antimicrobials involves inhibition of bacterial topoisomerase IV and DNA gyrase (both of which are type II topoisomerases), enzymes required for DNA replication, transcription, repair and recombination.
Mechanism of Resistance
Fluoroquinolone resistance can arise through mutations in defined regions of DNA gyrase or topoisomerase IV, termed the Quinolone-Resistance Determining Regions (QRDRs), or through altered efflux.
Fluoroquinolones, including levofloxacin, differ in chemical structure and mode of action from aminoglycosides, macrolides and ß-lactam antibiotics, including penicillins. Fluoroquinolones may, therefore, be active against bacteria resistant to these antimicrobials.
Resistance to levofloxacin due to spontaneous mutation in vitro is a rare occurrence (range: 10-9 to 10-10). Cross-resistance has been observed between levofloxacin and some other fluoroquinolones, some microorganisms resistant to other fluoroquinolones may be susceptible to levofloxacin.
Activity in vitro and in vivo
Levofloxacin has in vitro activity against Gram-negative and Gram-positive bacteria.
Levofloxacin has been shown to be active against most isolates of the following bacteria both in vitro and in clinical infections as described in Indications and Usage (1):
Gram-Positive Bacteria
Enterococcus faecalis
Staphylococcus aureus (methicillin-susceptible isolates)
Staphylococcus epidermidis (methicillin-susceptible isolates)
Staphylococcus saprophyticus
Streptococcus pneumoniae (including multi-drug resistant isolates [MDRSP])1
Streptococcus pyogenes
_________________________________________
1 MDRSP (Multi-drug resistant Streptococcus pneumoniae) isolates are isolates resistant to two or more of the following antibiotics: penicillin (MIC ≥ 2 mcg/mL), 2nd generation cephalosporins, e.g., cefuroxime; macrolides, tetracyclines and trimethoprim/sulfamethoxazole.
Gram-Negative Bacteria
Enterobacter cloacae
Escherichia coli
Haemophilus influenzae
Haemophilus parainfluenzae
Klebsiella pneumoniae
Legionella pneumophila
Moraxella catarrhalis
Proteus mirabilis
Pseudomonas aeruginosa
Serratia marcescens
Other Bacteria
Chlamydophila pneumoniae
Mycoplasma pneumoniae
The following in vitro data are available, but their clinical significance is unknown: Levofloxacin exhibits in vitro minimum inhibitory concentrations (MIC values) of 2 mcg/mL or less against most (≥ 90%) isolates of the following microorganisms; however, the safety and effectiveness of Levofloxacin in treating clinical infections due to these bacteria have not been established in adequate and well-controlled clinical trials.
Gram-Positive Bacteria
Staphylococcus haemolyticus
ß-hemolytic Streptococcus (Group C/F)
ß-hemolytic Streptococcus (Group G)
Streptococcus agalactiae
Streptococcus milleri
Viridans group streptococci
Bacillus anthracis
Gram-Negative Bacteria
Acinetobacter baumannii
Acinetobacter lwoffii
Bordetella pertussis
Citrobacter koseri
Citrobacter freundii
Enterobacter aerogenes
Enterobacter sakazakii
Klebsiella oxytoca
Morganella morganii
Pantoea agglomerans
Proteus vulgaris
Providencia rettgeri
Providencia stuartii
Pseudomonas fluorescens
Yersinia pestis
Anaerobic Gram-Positive Bacteria
Clostridium perfringens
Susceptibility Tests
When available, the clinical microbiology laboratory should provide the results of in vitro susceptibility test results for antimicrobial drug products used in the resident hospitals to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting an antibacterial drug product for treatment.
Dilution techniques:
Quantitative methods are used to determine antimicrobial minimal inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MIC values should be determined using a standardized procedure. Standardized procedures are based on a dilution method1, 2, 4 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of levofloxacin powder. The MIC values should be interpreted according to the criteria outlined in Table 9.
Diffusion techniques:
Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure2, 3 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 5 mcg levofloxacin to test the susceptibility of bacteria to levofloxacin.
Reports from the laboratory providing results of the standard single-disk susceptibility test with a 5 mcg levofloxacin disk should be interpreted according to the criteria outlined in Table 9.
* The current absence of data on resistant isolates precludes defining any categories other than "Susceptible." Isolates yielding MIC/zone diameter results suggestive of a "nonsusceptible" category should be submitted to a reference laboratory for further testing. | ||||||
Table 9: Susceptibility Test Interpretive Criteria for Levofloxacin | ||||||
S = Susceptible, I = Intermediate, R = Resistant | ||||||
Minimum Inhibitory Concentrations (mcg/mL) | Disk Diffusion (zone diameter in mm) | |||||
Pathogen | S | I | R | S | I | R |
Enterobacteriaceae | ≤2 | 4 | ≥8 | ≥17 | 14–16 | ≤13 |
Enterococcus faecalis | ≤2 | 4 | ≥8 | ≥17 | 14-16 | ≤13 |
Staphylococcus species | ≤2 | 4 | ≥8 | ≥17 | 14-16 | ≤13 |
Pseudomonas aeruginosa | ≤2 | 4 | ≥8 | ≥17 | 14-16 | ≤13 |
Haemophilus influenzae | ≤2 | --* | -- | ≥17 | -- | -- |
Haemophilus parainfluenzae | ≤2 | -- | -- | ≥17 | -- | -- |
Streptococcus pneumoniae | ≤2 | 4 | ≥8 | ≥17 | 14-16 | ≤13 |
Streptococcus pyogenes | ≤2 | 4 | ≥8 | ≥17 | 14-16 | ≤13 |
Yersinia pestis4 | ≤0.25 | -- | -- | -- | -- | -- |
Bacillus anthracis4 | ≤0.25 | -- | -- | -- | -- | -- |
A report of Susceptible indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of Intermediate indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where a high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of Resistant indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.
Quality Control:
Standardized susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of supplies and reagents used in the assay, and the techniques of the individuals performing the test.1,2,3,4 Standard levofloxacin powder should provide the range of MIC values noted in Table 10. For the diffusion technique using the 5 mcg disk, the criteria in Table 10 should be achieved.
Table 10: Quality Control Ranges for Susceptibility Testing | |||
Microorganism | Microorganism QC Number | MIC (mcg/mL) | Disk Diffusion (zone diameter in mm) |
Enterococcus faecalis | ATCC 29212 | 0.25 – 2 | -- |
Escherichia coli | ATCC 25922 | 0.008 – 0.06 | 29 – 37 |
Escherichia coli | ATCC 35218 | 0.015 – 0.06 | -- |
Haemophilus influenzae | ATCC 49247 | 0.008 – 0.03 | 32 – 40 |
Pseudomonas aeruginosa | ATCC 27853 | 0.5 – 4 | 19 – 26 |
Staphylococcus aureus | ATCC 29213 | 0.06 – 0.5 | -- |
Staphylococcus aureus | ATCC 25923 | -- | 25 – 30 |
Streptococcus pneumoniae | ATCC 49619 | 0.5 – 2 | 20 – 25 |
Package/label principal display panel
NDC 50383-286-16
Once a day
Levofloxacin Oral Solution 25 mg/mL
Each 1 mL contains 25 mg of levofloxacin in an aqueous solution.
Rx only
480 mL
LEVOFLOXACIN levofloxacin solution | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
|
Labeler - Hi-Tech Pharmacal Co., Inc. (101196749) |
Establishment | |||
Name | Address | ID/FEI | Operations |
Hi-Tech Pharmacal Co., Inc. | 101196749 | MANUFACTURE(50383-286) |