Erythromycin ethylsuccinate

Name: Erythromycin ethylsuccinate

Patient Handout

Print without Office InfoPrint with Office Info

Indications

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Ery-Ped and other antibacterial drugs, Ery-Ped should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

Ery-Ped is indicated in the treatment of infections caused by susceptible strains of the designated organisms in the diseases listed below:

Upper respiratory tract infections of mild to moderate degree caused by Streptococcus pyogenes, Streptococcus pneumoniae,or Haemophilus influenzae (when used concomitantly with adequate doses of sulfonamides, since many strains of H. influenzae are not susceptible to the erythromycin concentrations ordinarily achieved). (See appropriate sulfonamide labeling for prescribing information.)

Lower-respiratory tract infections of mild to moderate severity caused by Streptococcus pneumonia or Streptococcus pyogenes.

Listeriosis caused by Listeria monocytogenes.

Pertussis (whooping cough) caused by Bordetella pertussis. Erythromycin is effective in eliminating the organism from the nasopharynx of infected individuals rendering them noninfectious. Some clinical studies suggest that erythromycin may be helpful in the prophylaxis of pertussis in exposed susceptible individuals.

Respiratory tract infections due to Mycoplasma pneumoniae.

Skin and skin structure infections of mild to moderate severity caused by Streptococcus pyogenes or Staphylococcus aureus (resistant staphylococci may emerge during treatment).

Diphtheria: Infections due to Corynebacterium diphtheriae, as an adjunct to antitoxin, to prevent establishment of carriers and to eradicate the organism in carriers.

Erythrasma: In the treatment of infections due to Corynebacterium minutissimum. Intestinal amebiasis caused by Entamoebahistolytica (oral erythromycins only). Extra enteric amebiasis requires treatment with other agents. Acute Pelvic Inflammatory Disease Caused by Neisseria gonorrhoeae: As an alternative drug in treatment of acute pelvic inflammatory disease caused by N. gonorrhoeae in female patients with a history of sensitivity to penicillin. Patients should have a serologic test for syphilis before receiving erythromycin as treatment of gonorrhea and a follow-up serologic test for syphilis after 3 months.

Syphilis Caused by Treponemapallidum: Erythromycin is an alternate choice of treatment for primary syphilis in penicillin-allergic patients. In primary syphilis, spinal fluid examinations should be done before treatment and as part of follow-up after therapy.

Erythromycins are indicated for the treatment of the following infections caused by Chlamydia trachomatis: Conjunctivitis of the newborn, pneumonia of infancy, and urogenital infections during pregnancy. When tetracyclines are contraindicated or not tolerated, erythromycin is indicated for the treatment of uncomplicated urethral, endocervical, or rectal infections in adults due to Chlamydia trachomatis.

When tetracyclines are contraindicated or not tolerated, erythromycin is indicated for the treatment of nongonococcal urethritis caused by Urea plasma urealyticum.

Legionnaires' Disease caused by Legionella pneumophila. Although no controlled clinical efficacy studies have been conducted, in vitro and limited preliminary clinical data suggest that erythromycin may be effective in treating Legionnaires' Disease.

Prophylaxis

Prevention of Initial Attacks of Rheumatic Fever

Penicillin is considered by the American Heart Association to be the drug of choice in the prevention of initial attacks of rheumatic fever (treatment of Streptococcus pyogenes infections of the upper respiratory tract, e.g., tonsillitis or pharyngitis). Erythromycin is indicated for the treatment of penicillin-allergic patients.4 The therapeutic dose should be administered for 10 days.

Prevention of Recurrent Attacks of Rheumatic Fever

Penicillin or sulfonamides are considered by the American Heart Association to be the drugs of choice in the prevention of recurrent attacks of rheumatic fever. In patients who are allergic to penicillin and sulfonamides, oral erythromycin is recommended by the American Heart Association in the long-term prophylaxis of Streptococcal pharyngitis (for the prevention of recurrent attacks of rheumatic fever).4

How supplied

Ery-Ped 200 (erythromycin ethylsuccinate for oral suspension, USP) is supplied in bottles of 100 mL (NDC 24338-132-13)

Ery-Ped 400 (erythromycin ethylsuccinate for oral suspension, USP) is supplied in bottles of 100 mL (NDC 24338-130-13)

Recommended Storage

Store Ery-Ped 200 and Ery-Ped 400, prior to mixing, below 86°F (30°C). After reconstitution, Ery-Ped 200 and Ery-Ped 400 must be stored at or below 77°F (25°C) and used within 35 days; refrigeration is not required.

REFERENCES

3. Clinical and Laboratory Standards Institute.Performance Standards for Antimicrobial Disk Susceptibility Tests, 9th ed. Approved Standard CLSI Document M02-A9, Vol. 26(1). CLSI, Wayne, PA, Jan. 2006.

4. Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young, the American Heart Association: Prevention of Rheumatic Fever. Circulation. 78(4):1082-1086, October 1988.

Revised: June, 2012. Arbor Pharmaceuticals, Inc. Atlanta, GA 30328

Warnings

Hepatotoxicity

There have been reports of hepatic dysfunction, including increased liver enzymes, and hepatocellular and/or cholestatic hepatitis, with or without jaundice, occurring in patients receiving oral erythromycin products.

QT Prolongation

Erythromycin has been associated with prolongation of the QT interval and infrequent cases of arrhythmia. Cases of torsades de pointes have been spontaneously reported during postmarketing surveillance in patients receiving erythromycin. Fatalities have been reported. Erythromycin should be avoided in patients with known prolongation of the QT interval, patients with ongoing proarrhythmic conditions such as uncorrected hypokalemia or hypomagnesemia, clinically significant bradycardia, and in patients receiving Class IA (quinidine, procainamide) or Class III (dofetilide, amiodarone, sotalol) antiarrhythmic agents. Elderly patients may be more susceptible to drug-associated effects on the QT interval.

Syphilis in Pregnancy

There have been reports suggesting that erythromycin does not reach the fetus in adequate concentration to prevent congenital syphilis. Infants born to women treated during pregnancy with oral erythromycin for early syphilis should be treated with an appropriate penicillin regimen.

Clostridium difficile Associated Diarrhea

Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including Ery-Ped, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.

C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.

Drug Interactions

Serious adverse reactions have been reported in patients taking erythromycin concomitantly with CYP3A4 substrates. These include colchicine toxicity with colchicine; rhabdomyolysis with simvastatin, lovastatin, and atorvastatin; and hypotension with calcium channel blockers metabolized by CYP3A4 (e.g. verapamil, amlodipine, diltiazem) (see PRECAUTIONSDRUG INTERACTIONS).

There have been post-marketing reports of colchicine toxicity with concomitant use of erythromycin and colchicine. This interaction is potentially life-threatening, and may occur while using both drugs at their recommended doses (see PRECAUTIONSDRUG INTERACTIONS).

Rhabdomyolysis with or without renal impairment has been reported in seriously ill patients receiving erythromycin concomitantly with lovastatin. Therefore, patients receiving concomitant lovastatin and erythromycin should be carefully monitored for creatine kinase (CK) and serum transaminase levels. (See package insert for lovastatin)

Clinical pharmacology

Orally administered erythromycin ethylsuccinate suspension is readily and reliably absorbed under both fasting and nonfasting conditions.

Erythromycin diffuses readily into most body fluids. Only low concentrations are normally achieved in the spinal fluid, but passage of the drug across the blood-brain barrier increases in meningitis. In the presence of normal hepatic function, erythromycin is concentrated in the liver and excreted in the bile; the effect of hepatic dysfunction on excretion of erythromycin by the liver into the bile is not known. Less than 5 percent of the orally administered dose of erythromycin is excreted in active form in the urine.

Erythromycin crosses the placental barrier, but fetal plasma levels are low. The drug is excreted in human milk.

Microbiology

Erythromycin acts by inhibition of protein synthesis by binding 50Sribosomal subunits of susceptible organisms. It does not affect nucleic acid synthesis. Antagonism has been demonstrated in vitro between erythromycin and clindamycin, lincomycin, and chloramphenicol.

Many strains of Haemophilus influenza are resistant to erythromycin alone but are susceptible to erythromycin and sulfonamides used concomitantly.

Staphylococci resistant to erythromycin may emerge during a course of therapy.

Erythromycin has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section.

Gram-positive Organisms

Corynebacterium diphtheriae
Corynebacterium minutissimum

Listeria monocytogenes

Staphylococcus aureus
(resistant organisms may emerge during treatment)
Streptococcus pneumoniae

Streptococcus pyogenes

Gram-negative Organism

Bordetella pertussis
Legionella pneumophila

Neisseria gonorrhoeae

Other Microorganisms

Chlamydia trachomatis
Entamoebahistolytica

Mycoplasma pneumoniae

Treponemapallidum

Urea plasma urealyticum

The following in vitro data are available.

Erythromycin exhibits in vitro minimal inhibitory concentrations (MIC's) of 0.5 μg/mL or less against most ( ≥ 90%) strains of the following microorganisms; however, the safety and effectiveness of erythromycin in treating clinical infections due to these microorganisms have not been established in adequate and well-controlled clinical trials.

Gram-positive Organisms

Viridans group streptococci

Gram-negative Organisms

Moraxella catarrhalis

Susceptibility Tests

Dilution Techniques

Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MIC's). These MIC's provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MIC's should be determined using a standardized procedure. Standardized procedures are based on a dilution method1,2 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of erythromycin powder. The MIC values should be interpreted according to the following criteria:

For Staphylococcus spp

MIC (μg/mL) Interpretation
≤ 0.5 Susceptible (S)
1 – 4 Intermediate (I)
≥ 8 Resistant (R)

For Streptococcus spp. and Streptococcus pneumoniae

MIC (μg/mL) Interpretation
≤ 0.25 Susceptible (S)
0.5 Intermediate (I)
≥ 1 Resistant (R)

A report of “Susceptible” indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of “Intermediate” indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of “Resistant” indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.

Standardized susceptibility test procedures require the use of laboratory control microorganisms to control the technical aspects of the laboratory procedures. Standard erythromycin powder should provide the following MIC values:

Microorganism MIC (μg/mL)
S. aureus ATCCa29213 0.25-1
E. faecalis ATCC 29212 1-4
S. pneumoniae ATCC 49619 0.03-0.12
aATCC is a registered trademark of the American Type Culture Collection

Diffusion Techniques

Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 15-μg erythromycin to test the susceptibility of microorganisms to erythromycin.

Reports from the laboratory providing results of the standard single-disk susceptibility test with a 15-μg erythromycin disk should be interpreted according to the following criteria:

For Staphylococcus spp

Zone Diameter (mm) Interpretation
≥ 23 Susceptible (S)
14 – 22 Intermediate (I)
≤ 13 Resistant (R)

For Streptococcus spp. and Streptococcus pneumoniae

Zone Diameter (mm) Interpretation
≥ 21 Susceptible (S)
16 – 20 Intermediate (I)
≤ 15 Resistant (R)

Interpretation should be as stated above for results using dilution techniques. Interpretation involves correlation of the diameter obtained in the disk test with the MIC for erythromycin.

As with standardized dilution techniques, diffusion methods require the use of laboratory control microorganisms that are used to control the technical aspects of the laboratory procedures. For the diffusion technique, the 15-μg erythromycin disk should provide the following zone diameters in these laboratory test quality control strains:

Microorganism Zone Diameter(mm)
S. aureus ATCC 25923 22-30
S. pneumonia ATCC 49619 25-30

REFERENCES

1. Clinical and Laboratory Standards Institute.Method for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 7th ed. Approved Standard CLSI Document M07A7, Vol. 26(2). CLSI, Wayne, PA, Jan. 2006.

2. Clinical and Laboratory Standards Institute.Performance Standards for Antimicrobial Susceptibility Testing, 18th Informational Supplement, CLSI Document M100-S18, Vol 28(1). CLSI, Wayne, PA, Jan. 2008.

What is the most important information i should know about erythromycin?

You should not take erythromycin if you are allergic to it, or if you are also using cisapride (Propulsid), dihydroergotamine (D.H.E. 45, Migranal), ergotamine (Ergomar, Cafergot, Migergot), or pimozide (Orap). Erythromycin may interact with these medicines and could cause dangerous or life-threatening heart rhythm disorders.

Before you take erythromycin, tell your doctor if you have liver disease, myasthenia gravis, a heart rhythm disorder, a history of Long QT syndrome, or low levels of potassium or magnesium in your blood.

Take this medicine for the full prescribed length of time. Your symptoms may improve before the infection is completely cleared. Skipping doses may also increase your risk of further infection that is resistant to antibiotics. Erythromycin will not treat a viral infection such as the common cold or flu.

Antibiotic medicines can cause diarrhea, which may be a sign of a new infection. If you have diarrhea that is watery or bloody, stop taking erythromycin and call your doctor. Do not use anti-diarrhea medicine unless your doctor tells you to.

Side effects

The most frequent side effects of oral erythromycin preparations are gastrointestinal and are dose-related. They include nausea, vomiting, abdominal pain, diarrhea and anorexia. Symptoms of hepatitis, hepatic dysfunction and/or abnormal liver function test results may occur. (See WARNINGS.)

Onset of pseudomembranous colitis symptoms may occur during or after antibiotic treatment. (See WARNINGS.)

Erythromycin has been associated with QT prolongation and ventricular arrhythmias, including ventricular tachycardia and torsades de pointes.

Allergic reactions ranging from urticaria to anaphylaxis have occurred. Skin reactions ranging from mild eruptions to erythema multiforme, Stevens- (erythromycin ethylsuccinate) Johnson syndrome, and toxic epidermal necrolysis have been reported rarely.

There have been rare reports of pancreatitis and convulsions.

There have been isolated reports of reversi (erythromycin ethylsuccinate) ble hearing loss occurring chiefly in patients with renal insufficiency and in patients receiving high doses of erythromycin.

Read the entire FDA prescribing information for Erythromycin Ethylsuccinate (Erythromycin Ethylsuccinate)

Read More »

What should i discuss with my healthcare provider before taking erythromycin?

You should not take erythromycin if you are allergic to it, or if you are taking any of the following medicines. Erythromycin may interact with these medicines and could cause dangerous or life-threatening heart rhythm disorders.

  • cisapride (Propulsid);
  • pimozide (Orap); or
  • dihydroergotamine (D.H.E. 45, Migranal) or ergotamine (Ergomar, Cafergot, Migergot).

To make sure you can safely take erythromycin, tell your doctor if you have any of these other conditions:

  • liver disease;
  • myasthenia gravis;
  • a heart rhythm disorder;
  • a history of Long QT syndrome; or
  • an electrolyte imbalance (such as low levels of potassium or magnesium in your blood).

FDA pregnancy category B. Erythromycin is not expected to harm an unborn baby. Tell your doctor if you are pregnant or plan to become pregnant during treatment.

Erythromycin can pass into breast milk and may harm a nursing baby. Do not use this medication without telling your doctor if you are breast-feeding a baby.

Older adults may be more likely to have side effects on heart rhythm, including a life-threatening fast heart rate.

Uses

Consult your pharmacist.

How to use Erythromycin Ethylsuccinate Powder

Consult your pharmacist.

Interactions

Consult your pharmacist.

Keep a list of all your medications with you, and share the list with your doctor and pharmacist.

Does Erythromycin Ethylsuccinate Powder interact with other medications?
(web3)